• Title/Summary/Keyword: Vehicle Development Process

Search Result 578, Processing Time 0.031 seconds

A Numerical Analysis for the Washboarding Phenomenon on the Top Surface of Fine Powders Using the Discrete Element Method (분말에서 발생하는 Washboarding 현상에 대한 이산요소법을 이용한 수치해석적 연구)

  • Lee, Seoungjun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.93-98
    • /
    • 2020
  • Washboarding is a phenomenon in which a wavy shape occurs periodically and naturally on an unpaved road made of soil or gravel. This phenomenon causes high-frequency vibration of the traffic traveling on the road because of the height difference of the wave pattern, which may lead to vehicle failure. Consequently, associated research is needed concerning vehicle safety. Therefore, in this study, a numerical simulation was conducted using the discrete element method, which is often used for powder simulation. In contrast to previous studies, the results of this study demonstrate that washboarding can occur even in an environment of 1.5 m/s or less. However, the amount of washboarding is minimal. The study revealed that washboarding develops over time, such that sufficient development time is required before measurements are taken.

An Analysis on the Influential Factors to Set the Path Planning Algorithm for Unmanned Ground Vehicle in Combat Environment (전장환경에서 무인전투차량의 경로계획 알고리즘설정 영향요인 분석)

  • Baek, Jong-Sung;Lee, Choon-Joo
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.233-242
    • /
    • 2009
  • This paper briefly reviews the path planning methods that are applicable to the autonomous mobile robots for the military. Two distinct path search algorithms, $A^*$ and $D^*$ that are most popular and flexible in public applications, among those reviewed are coded and analyzed in terms of combat environment assessment factors called METT+TC for the area of operations. The results imply that it is important to consider the characteristics of defense acquisition process and the specific requirements of defense operation so that the successful technology development of the Robot products is directly linked to the defense procurement of Robot products.

  • PDF

Coupled Loads Analysis of KOMPSAT-1 (다목적실용위성 1호의 연성 하중 해석)

  • Lee, Ho-Hyung;Kim, Hak-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.442-447
    • /
    • 2001
  • The process and results of the Coupled Loads Analysis performed in the course of the development of the KOMPSAT-1 were introduced in this paper. The process of performing the Coupled Loads Analysis was explained. The finite-element model of KOMPSAT-1 was explained. The load cases analyzed were introduced. With the results obtained from the Coupled Loads Analysis, it was confirmed that the KOMPSAT-1 was safe from the loads transmitted from the launch vehicle during launch vehicle flight.

  • PDF

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

A Study on the ACC Safety Evaluation Method Using Dual Cameras (듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

A Kinematic Model Based on the Rear Speed and Steering Angle of Three-Wheeled Agriculture Electric Vehicle (농업용 삼륜구동 전기자동차의 후방 속도 및 조향각에 기반한 운동학적 모델)

  • Choi, Wonsik;Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jaeyoung;Lee, Ensuk;Yang, Jiung;Keefe, Dimas Harris Sean;Jeon, Yeonho;Chung, Sungwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.197-205
    • /
    • 2018
  • In this research, tricycle vehicle simulation based on multi-body environment has been introduced. Mathematical model of tricycle vehicle was developed. In this research the left and right wheel speed are calculated based on the rear steering angle and velocity. The kinematic model for the three - wheel drive system was completed and the results were analyzed using the actual vehicle drawings. Through simulink vehicle performance on linear and rotation movement were simulated. Using the mathematical model the control system can be applied directly to the tricycle vehicle. The simulation result shows that the proposed vehicle model is successfully represent the movement characteristics of the real vehicle. This model assists the vehicle developer to create the controller and understand the vehicle during the development process.

A Study on Braking Performance of Break Disc (브레이크 디스크의 제동 성능에 관한 연구)

  • Ryu, Mi-Ra;Bae, Hui-Eun;Kim, Hyun-Su;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • The present research aims to develop the aluminum disc brake replacing the existing cast iron disc brake. Material such as aluminum using FEM numerical analysis in order to improve the characteristics of each element, we analyze the performance characteristics and braking time you try to change. We try to lay the foundation for the development of an aluminum disc by investigating performance characteristics of the existing cast iron disc brake and comparing them with those of the aluminum disc. This involves FEM dynamics analysis for disc materials and experimental tests using the brake dynamometer. From this study, the results of 7075 aluminum braking performance can be seen that the best.

A Study of the Experiment and the Calculation Method on the Coolant Flow Rate of Engine and Vehicle Cooling System (엔진 및 차량냉각계의 냉각수유량 측정실험 및 계산방법에 관한 연구)

  • 오창석;유택용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the prediction method of coolant flow rates has been developed and applied to an engine and vehicle cooling system. The flow rate passing through each component of the system is very important parameter to evaluate the heat transfer process form the combustion gas to the coolant and the heat rejection process form the radiator /heater to the ambient air. However, the present study reveals that the measurement using the flowmeter fails to give practical flow rates due to its additive resistance. In contrast, the present method which uses the parallel and serial relationship of flow resistance proved to be a good tool to predict the real flow rates. It can be also used to design the cooling system in the incipient stage of engine/vehicle development . The procedure was coded to the computer program so as to use it flexibly and, in the future, to expand it into an independent design tool of the whole cooling system including the heat release and rejection.

  • PDF

A Research on the Vibration Characteristics of Vehicle due to Speaker Sound at Low Frequency (저주파 스피커 출력음 대비 차량 진동 특성 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.673-682
    • /
    • 2007
  • Recently the trend of automobile industry is that IQS evaluation index against a sensitivity quality is increasing. To reduce rattle noise due to speaker sound at low frequencies, it is required the advanced technology analysis process of body structure. This paper optimized the design parameters of package tray panel according to the theoretical background about robust design and suggested the design guideline for resonance avoidance and the reduction of vibrational sensitivity considering the excitation frequency of woofer speaker. And this paper described the design process of a door module panel through the sensitivity analysis in case of the door speaker excitation. Finally, the analysis of the quality deviation using mother car is suggested to guarantee the stable characteristics of vehicle vibration in the early stage of vehicle development. These improvements can lead to shortening the time needed to develop better vehicles.

A Study on the Dynamic Characteristics of Door Module Plate (도어 모듈 플레이트의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Wan-Su;Kim, Chan-Jung;Lee, Bong-Hyun;Jang, Woon-Sung;Mo, Yu-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.853-861
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.