• Title/Summary/Keyword: Vehicle Antenna

Search Result 211, Processing Time 0.026 seconds

Design for a Tag Antenna Using License Plate Attached Vehicle Bumper (차량 범퍼에 부착된 번호판용 태그 안테나의 설계)

  • Park, Dea-Hwan;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.535-543
    • /
    • 2009
  • This paper describes a design for RFID(Radio Frequency Identification) tag antenna using license plate attached the vehicle bumper in 900 MHz band. The proposed tag antenna size which is located on upper center position of a vehicle license plate is 162.5${\times}$40${\times}$1 mm$^3$. A resonant frequency of design antenna and the bandwidth which has return loss of -10 dB below are 900 MHz and about 720 MHz(640${\sim}$1,360 MHz), respectively. The commercial chip impedance considered on design was 16- j131 ${\Omega}$ and the complex conjugate impedance of chip was used as input impedance of tag antenna. The measured return loss and radiation pattern were agreed well with the calculated results. The measured readable range of the proposed tag antenna designed on only the vehicle license plate was 11.5 m. Moreover, its range of the fabricated tag antenna that the license plate and the vehicle bumper were fixed by volt and nut was observed 10.4 m. These measured readable range showed about 5 m above far distance more than the average readable range of commercial tag antenna.

A Study on the Shock Analysis of Large Scale Antenna (대형 안테나의 충격해석에 관한 연구)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.26-32
    • /
    • 2021
  • The antenna is mounted on the vehicle and operated, so its components must be able to withstand the shock that may occur while driving. In this study, the stability of antenna mounted on the vehicle is verified through the connection between modal analysis and transient analysis. The shock data used was taken from MIL-STD-810H, METHOD 516.8. As a result of the analysis of antenna, the maximum equivalent stress 169.49MPa and minimum margin of safety 2.31 has occurred on the bracket of antenna. Thus, it was found that the antenna has enough stability during the operation.

Directivity Pattern Design of a Vehicle Tag Antenna for Improvement of the Readable Range (인식 거리 개선을 위한 차량용 태그 안테나의 지향성 설계)

  • Park, Dae-Hwan;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.872-879
    • /
    • 2010
  • This paper describes the design for radiation pattern directivity of vehicle license plate RFID tag antenna to improve the readable range. Directivity pattern of the proposed passive antenna is decided by the meander line position and the bumper size attached to the tag antenna. In order to prove the verification of the calculated directivity pattern and readable range of the proposed antenna, the tag antenna has been fabricated and measured at the anechoic chamber. It is shown that the maximum directivity gain of the measured radiation pattern of active and passive tag antenna were observed 2.32 dBi and 3.1 dBi, respectively. The maximum readable range of passive tag antenna was measured about 8.5 m at ${\pm}45^{\circ}$ beam direction on the basis of the driving car direction($0^{\circ}$ of azimuth angle).

Design and Implementation of An Active Antenna for Vehicle (차량용 통합 능동형 안테나의 설계 및 제작)

  • Kim, Sang-Uk;Go, Min-Ho;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper, designed and fabricated the microstrip antenna using parasitic plane. This active antenna for the use of AM/FM, DMB(Digital Multimedia Broadcasting), GPS(Global Positioning System) band in vehicle. Fabricated active antenna was compared to existing planar antenna represents more than 15% size reduction and equivalence performance compared to commercial helical antenna. And satisfy performance in DMB, GPS band. This active antenna composed of single input port and two output ports and entire size of antenna is $133{\times}31{\times}1.2mm$.

  • PDF

Shark Antenna for Vehicle TDMB and GPS Receiver (TDMB 및 GPS 수신용 전장용 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.57-62
    • /
    • 2008
  • In this paper, a folded helical monopole antenna for TDMB receiving and a trapezoidal fractal microstrip patch antenna for GPS were designed and fabricated for the vehicle shark antenna. To minimize null which is generating toward antenna axis direction and to receive both vertical polarization and horizontal polarization for TDMB antenna, we fold 90 degree helical monopole element. GPS antenna to get wide bandwidth and gain improvement was designed an air substrate trapezoidal microstrip patch antenna. Fabricated TDMB and GPS antenna were measured for S11 and radiation pattern, and compared with a commercialized antenna. TDMB antenna shows 3 dB higher antenna gain and receiving signal strength than the commercial one. GPS antenna shows the gain of 4.31 dBi at the resonant frequency, which is $3{\sim}5\;dB$ higher gain over whole operating band and 135MHz wide bandwidth at 2:1 VSWR than the conventional ceramic antenna.

  • PDF

Design Optimization of the Support Frame of an Antenna Positioner Mounted on a Vehicle (차량 탑재형 안테나 포지셔너의 반사판 지지대 최적설계)

  • Jang, Taeho;Kim, Youngshik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.411-416
    • /
    • 2014
  • In this research we present design optimization methods for a vehicle-mounted satellite antenna positioner. Our initial antenna positioner was conservatively designed to satisfy a worst case scenario where wind blew across the positioner at the speed of 120 km/h. Investigating stresses and safety based on Finite Element Methods (FEM), we find reflector support frames can be optimized to significantly reduce the weight of the positioner system. Thus, we optimize the reflector support frame from the given initial design while considering weight, maximum stress, maximum allowable deflection, cross section, and thickness. As a result, Shape C and the thickness of 2 mm are determined for the cross section of the reflector support frame. Applying this result, the weight of the new antenna positioner is 57.343 kg, which is decreased by 10.74% compared to the initial conservative design.

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna (다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석)

  • Kim, Seung-Ho;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.745-751
    • /
    • 2018
  • This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

Dual-Band Orthogonal-Polarization Microstrip Antenna for Vehicle-to-Nomadic Devices Communication (차량 단말 통신을 위한 이중대역 직교편파 마이크로스트립 안테나)

  • Lim, Eunsook;Lee, Dong-Hyo;Pyo, Seongmin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.606-612
    • /
    • 2015
  • This paper proposes a new design of a dual-band orthogonal-polarization microstrip antenna for V2N(Vehicle to Nomadic Device) communication system. The proposed antenna consists of a perpendicular feeding structure for utilizing orthogonal linear polarizations and an microstrip radiator which loaded by close-looped H-shape slot for obtaining dual-band operation. Due to the geometrically different loading effect of the close-looped H-shape slot for each feeding location, the orthogonally linear polarization at dual-band operation of the proposed antenna can be successfully achieved. The proposed antenna theoretically and experimentally demonstrates the vertical linear polarization at the operating frequency of 1.8 GHz and the horizontal linear polarization at the operating frequency of 2.4 GHz, respectively. The simulation and measurement results of the implemented antenna have been in good agreement with the reflection coefficients, radiation patterns, and realized antenna gains.

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.

Improvement of Communication Reliability of Small UAV by a Tapered Stacked Antenna

  • Kim, Duck-Hwan;Lee, Kyu-Hwan;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.796-798
    • /
    • 2006
  • This letter proposes a tapered stacked microstrip antenna for application in small unmanned aerial vehicles (UAVs), which has advantages in mountainous terrains. With its tapered structure and increased bandwidth designed to operate at the resonance frequency of 2.4 GHz, the proposed antenna improves directivity, accuracy, and precision of small UAVs. The test flight results show the proposed tapered antenna has a three times higher impedance capability of 350 MHz based on VSWR<2. The transmission pattern is also more reliable than that of previous antenna designs.

  • PDF