• 제목/요약/키워드: Vegetative storage protein

검색결과 7건 처리시간 0.025초

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Changes of Chemical Components During Seed Development in Black Soybean (Glycine max L.)

  • Shim Sang In;Kang Byeung Hoa
    • 한국작물학회지
    • /
    • 제49권4호
    • /
    • pp.331-336
    • /
    • 2004
  • Changes in the level of metabolites in leaves and pods were examined with respect to the seed chemical composition in black soybean. There was no further increase in pod length after 42 days after flowering (DAF). Pod weight, however, persistently increase until 73 DAF, thereafter the weight was slightly lowered. The seed storage protein, however, increased drastically as the increasing rate of pod weight was lessened at 61 DAF. The accumulation of seed storage proteins was occurred conspicuously as the increasing rate of pod weight was slowed down. The chlorophyll content both in leaves and pods was drastically decreased after 50 DAF. The beginning of drastic reduction in chlorophyll content was occurred concomitantly with the reduction of soluble protein content in leaves. The sugar content in leaves showed similar tendency with chlorophyll and soluble protein content. The starch level in leaves, however, showed different changing pattern during seed development. The starch content in leaves was increased persistently until 66 DAF, thereafter the content was decreased drastically to about $55\%$ of maximal value at 66 DAF. Total phenolics content in leaves and the anthocyanins content in seeds were stable without noticeable increase until 66 DAF. The contents were increased dramatically after 66 DAF showing the synchronized pattern with the decrease in starch level in leaves. The levels of the selected metabolites in leaf and seed suggested that the accumulation of chemical components of black soybean seed is launched actively at 66 DAF. The profile of storage proteins was nearly completed at 61 DAF because there was no large difference in densitometric intensity among protein subunits after 61 DAF. In soybean, chemical maturation of seed begins around 61 to 66 DAF at which most metabolites in vegetative parts are decreased and remobilized into maturing seeds.

Proteomic Identification of Differentially Expressed Proteins in Arabidopsis Mutant ntm1-D with Disturbed Cell Division

  • Lee, Kyung Hyeon;Kim, Youn-Sung;Park, Chung-Mo;Kim, Hie-Joon
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.70-77
    • /
    • 2008
  • Proteome analysis was performed to identify proteins differentially expressed in an Arabidopsis mutant, ntm1-D. In this mutant the NAC transcription factor NTM1 is constitutively expressed and the resultant phenotypic changes include dwarfism, serrated leaves, and altered floral structures, probably due to reduced cell division. Marked elevation of proteins mediating environmental stress responses, including annexin, vegetative storage proteins, beta-glucosidase homolog 1, and glutathione transferases was observed. Overexpression of annexin was confirmed by RT-PCR and Western blotting. These observations suggest that the reduced growth observed in the ntm1-D mutant is caused by enhancement of its stress responses, possibly resulting in a cost in fitness.

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

바위솔속 엽육조직 세포 내 액포의 미세구조 분화 양상 (Ultrastructural Differentiation of the Vacuole in Mesophyll Tissues of Orostachys)

  • 김인선
    • Applied Microscopy
    • /
    • 제39권4호
    • /
    • pp.333-340
    • /
    • 2009
  • 다육질성 CAM 식물에서는 구조와 기능의 분화가 환경조건에 잘 적응된 합리적인 광합성을 수행하여 동일한 엽육세포에서 $CO_2$ 고정, 유기물 합성과 저장, 분해 및 활용하는 시간이 서로 다르게 나타난다. 이러한 유기산 대사는 CAM 식물의 가장 뚜렷한 대사적 특징으로 밤에 말산을 합성하여 액포에 저장하고 낮에 이용하므로 이들의 액포는 급격한 pH의 차이를 일주기성으로 조절해야 하는 매우 중요한 세포소기관이다. 본 연구에서는 식물체 내 생리적 건조가 지속되어 CAM 광합성을 수행하는 바위솔속 식물 3종의 다육질성 엽육조직 세포의 특성을 액포 구조분화에 초점을 두어 미세구조적으로 연구하였다. 바위솔속의 다육질성 엽육조직은 수분저장성 세포들로 구성되어 있으며, 액포융합 등의 액포화현상과 액포 내 다양한 2차 액포형성이 현저한 구조적 특징이었다. 이들 액포는 매우 역동적이어서 분열하여 다수의 소액포를 형성하거나 소액포들의 융합으로 큰 액포를 형성하였고, 일부는 전자밀도가 높은 저장성 액포로 발달하였다. 이러한 액포화는 세포의 크기를 경제적이고 에너지 효율적으로 증가시키는 방식으로 대부분의 다육질성 CAM 식물에서 발달하며, 낮과 밤에 일주기성으로 반복되는 세포 내 pH 농도의 급격한 변화를 대처할 수 있게 한다. 또한, 막 함입에 의한 다양한 크기의 수많은 2차 액포 형성은 단 기간 내에 액포막의 용적을 증가시켜 이러한 목적을 충족시켜 주는데 일주기적으로 사용되는 매우 중요한 세포 내 구획이 된다. 액포의 신장으로 세포질은 세포벽 주변부위로 밀려나 얇은 층으로 국한되었으나, 이들 세포질 내에서도 엽록체와 미토콘드리아는 액포와 밀접하게 연관되어 분포하고, 세포 간에는 원형질연락사가 잘 발달하였다. 이러한 미세구조들의 발달은 다육질성 엽육세포가 일주기성으로 급변하는 세포 내 유기산 대사과정에 적응하기 위해 액포에서의 신속하고 원활한 대사물질의 수송이 이루어져야 하기 때문일 것으로 추정된다.

인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여 (The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion)

  • 황종규
    • 한국작물학회지
    • /
    • 제5권1호
    • /
    • pp.69-86
    • /
    • 1969
  • 인삼식물의 종간교잡에 있어서 일대잡종식물은 양친에 대하여 약 1.6~3.0배의 강제를 나타내지만 심한 불임현상으로 거의 잡종 제삼세대를 얻을수 없었다는 점에서 그 원인을 밝히고저 고려인삼${\times}$인 미국인삼의 잡종에 대한 발생학적조사관찰을 하였던 바 다음과 같은 결과를 얻었다. 1. 잡종인삼의 영양생장은 양친과 같이 정상적이며 강세를 나타내나 생식생장에서는 심한 조해를 받는다. 2. 생식기관형성에 있어서도 감수분열기 이전까지는 제조직의 발생은 거의 정상적으로 진행된다. 3. 대포자모세포나 소포자모세포의 감수분 장과정은 심한 불규칙성을 나타내며 어떠한 것은 분열직전부터 퇴화되기 시작한다. 4. 소포자모세포의 핵분열에 있어서 제1분열 중기 또는 후기에 일가염색체 또는 염색체교 등이 출현하는 이상분열상을 관찰할 수 있었으나 감수분열이 끝난 것은 역시 사분자가 대부분이고 이분자나 사분자 이상의 소포자형성은 볼 수 없었다. 5. 소포자형성 또는 화분형성과정에 있어서 한 약내에서 여러 단계의 발육상을 볼 수 있었다. 6. 거대, 미소, 공허화분은 극히 적었다.(Fig. 23). 7. 대포자모세포기 이후 배주의 발육속도는 전반적으로 지연된다. 8. 감수분열을 마친 후 대포자는 오분자를 형성하는 것도 있다.(Fig. 5). 9. 대개는 합점측의 대포자가 활성화하는데 중간에 위치하는 것이 활성대포자인 것도 불 수 있다.(Fig. 6). 10. 배주의 퇴화는 대포자모세포기부터 팔핵배낭기까지 사이에 일어나는데 그 시작 시기는 개체마다 조만이 있으며 각양각색이다. 11.0 대포자의 배열은 양친에서는 선장, 중간형인데 F1에서는 선장, 중간형, T형, ㅗ형 등 여러 가지 형을 볼 수 있다.(Fig. 5, 7). 12. 배주에 있어서 감수분열이나 배낭핵분열 또는 배낭형성에 불규칙성에 심할수록 합점기부에 잔재하는 배심조직이 크다(Fig. 8, 10). 13. 배낭형성기까지 도달한 것이라 하더라도 배낭핵은 항시 불안정하여 정해진 장소에 배치되지 못한다.(Fig. 10, 11, 12). 14. 배유조직을 결한 배낭내에 선장의 4세포원배를 형성한 것을 볼 수 있었다.(Fig. 20) 15. 인삼의 잡종에 있어서의 불임원인을 다음과 같이 추정하였다. a) 잡종의 불임현상은 교잡에 의한 Gene-action system의 재조합으로 생체대사계에 혼란을 일으켜 배우자형성세포와 위요세포간의 우열관계가 전도되여 성적결함을 가져오는데 있다고 보았다. 즉 정상배낭에서는 배우자형성세포는 그것을 둘러싸고 있는 위요세포보다 크고 농염되며 활성적이어서 위요세포를 소화흡수하여 발육케 된다. 그러나 퇴화배낭에서는 재조합으로 인한 세포질의 변화는 극성 (Polarity) 또는 내생리듬 (Endogneousrhythm)의 변화 혹은 교란을 가져와 발육과정에서 성적결함을 일으켜 불임으로 된다고 추정하였다.

  • PDF