• Title/Summary/Keyword: Vegetative shoot

Search Result 91, Processing Time 0.032 seconds

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF

Plant regeneration and transformation of grape (Vitis labrusca L.) via direct regeneration method (포도 (Vitis labrusca L.)의 직접 재분화 방법을 이용한 식물체 재분화와 형질전환)

  • Kim, Se Hee;Shin, Il Sheob;Cho, Kang Hee;Kim, Dae Hyun;Kim, Hyun Ran;Kim, Jeong Hee;Lim, Sun-Hyung;Kim, Ki Ok;Lee, Hyang Bun;Do, Kyung Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.210-216
    • /
    • 2013
  • Efficient regeneration methods and transformation system are a priority for successful application of genetic engineering to vegetative propagated plants such as grape (Vitis labrusca L.). This research is to establish shoot regeneration system from plant explants for 'Campbell Early', 'Tamnara', 'Heukgoosul', 'Heukbosek' using two types of plant growth regulators supplemented to medium. The highest adventitious shoot regeneration rate of 5% was achieved on a medium containing of Murashige and Skoog (MS) inorganic salts and Linsmaier and Skoog (LS) vitamins, 2 mg/L of TDZ and 0.1 mg/L of IBA. Leaf tissue of 'Campbell Early', was co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, gus gene as reporter gene and resistance to kanamycin as selective agent, the other Agrobacterium strains, GV3101 containing the vector pB7 WG2D carrying with mPAP1-D gene. mPAP1-D is a regulatory genes of the anthocyanin biosynthetic pathway. 'Campbell Early' harboring mPAP1-D gene was readily able to be selected by red color due to anthocyanin accumulation in the transformed shoot. These results might be helpful for further studies to enhance the transformation efficiency in grape.

Growth and Population Dynamics of Zostera marina Due to Changes in Sediment Composition in the Seomjin Estuary, Korea (퇴적물 성상 변화에 따른 섬진강 하구 거머리말의 생장 특성)

  • kim, Jeong Bae;Park, Jung-Im;Lee, Won-Chan;Lee, Kun-Seop
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • The growth and population dynamics of eelgrass (Zostera marina) due to changes in sediment composition were examined in the lower intertidal zone of the Seomjin Estuary, Korea. We surveyed environmental factors such as water temperature, underwater irradiance, main types and organic content of sediment, tidal exposure, and nutrient concentrations in the water column and sediment pore water, in relation to the shoot density, biomass, morphological characteristics, and growth of Z. marina inhabiting lower intertidal zones. The survey was conducted monthly from May to December of 2004 and 2009. The water temperature showed obvious seasonal trends in both study years. Underwater irradiance was significantly higher in 2009 than in 2004. Tidal exposure was not significantly different between 2004 and 2009. The sediment was muddy-sand in 2004 but became sandy and with a significantly lower organic content in 2009. Water column $NH_4{^+}$ concentrations were significantly higher in 2004 than in 2009. Sediment pore water $NO_3{^-}+NO_2{^-}$ concentrations were significantly higher in 2009 than in 2004. Other nutrient concentrations did not differ significantly between 2004 and 2009. Morphological characteristics, including eelgrass length and leaf width were significantly lower in 2009 than in 2004. Eelgrass shoot height, leaf length, and sheath length showed typical seasonal patterns, increasing in early summer and decreasing in autumn, in both years. Vegetative shoot density was not significantly different between 2004 and 2009, while the biomass of individual plant parts and the total biomass were significantly lower in 2009. Eelgrass leaf productivity did not differ between years, but leaf turnover time was significantly shorter in 2009 than in 2004. Eelgrass downsizing and decreased turnover time in 2009 compared to 2004 indicate more effective adaptations to the stress of long-term changes in sediment composition. Overall, results suggest that changes in sediment composition can be a limiting factor for seagrass growth in the intertidal zone.

Optimum Crop Load in Different Planting Densities of Adult 'Fuji'/M.9 Apple Tree for Preventing Biennial Bearing and Stabilizing Tree Vigor (성목기 '후지'/M.9 사과나무의 해거리 방지와 수세안정을 위한 재식거리별 적정 착과 수준)

  • Sagong, Dong-Hoon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This study was conducted in three years (7-9 years after planting) to investigate vegetative growth, yield, fruit quality, and return bloom for optimum crop load based on different planting densities of adult 'Fuji'/M.9 apple trees. As plant materials, 'Fuji'/M.9 apple trees planted at $3.5{\times}1.5m$ (190 trees per 10 a), $3.5{\times}1.2m$ (238 trees per 10 a), and $3.2{\times}1.2m$ (260 trees per 10 a) spacing and trained as slender spindles were used. The crop load was assigned to five different object ranges as follows: 55-64, 65-74, 75-84, 85-94, and 95-104 fruit per tree. TCA increment, total shoot growth, return bloom, yield per tree, and yield efficiency tended to increase as planting density decreased, and fruit weight and soluble solid content tended to increase as the object range of crop load decreased. Fruit red color tended to increase as shoot growth decreased. For apple trees planted with 238 trees and 260 trees per 10a, biennial bearing occurred when the crop load was over 85-94 and 75-84 fruits, respectively. However, biennial bearing did not occur when the crop load was 95-104 fruits in apple trees planted with 190 trees per 10a. Accumulated yield tended to increase as planting density and crop load increased, but that of biennial bearing did not show such a difference. Based on our results, optimum crop load recommendations are to set 95-104 fruits per tree in 'Fuji'/M.9 mature apple trees planted at 190 trees per 10a, 75-84 fruits per tree at 238 trees per 10a, and 65-74 fruits per tree at 260 trees per 10a.

Mineral Absorption by Cymbidium Jungfrau in the Solution Culture (서양 심비디움 양액재배에서의 무기물 흡수)

  • Song, Sung-Jun;Boo, Chang-Ho;U, Zang-Kual
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • $N(^{15}N)$ and $P(^{32}P)$ absorption by 2 year-old Cymbidium Jungfrau in solution culture were investigated. Growth, photosynthesis rate, chlorophyll content and mineral composition of Cymbidium in the solution culture with bark or granular rockwool were compared with these parameters in the conventional pot culture. Nitrogen absorption by Cymbidium was higher in full sunlight than in 60% of sunlight while P absorption was higher in 60% of sunlight. Sixty seven % of N absorbed in plant was redistributed to the bulb(39%) and leaves(28%) while 46% of P absorbed was fund in the bulb (36.2%) and leaves (10.2%). Accumulation of P in leaves was 3-fold lower than that of N. N and P absorption in 0.5 or 1 year- old daughter plant Bowing vigorously were greater than in immature daughter or mother plant. The absorption rate of phosphorus in Cymbidium was 350-fold lower than that of barley. Greater shoot length and bulb diameter, and higher fresh weight, photosynthesis rate and chloroployll content were observed in the solution culture than in the conventional pot culture. Solution culture had-also more content of N, P, K and Mg in leaves, bulb and root than conventional pot culture but did not that of Ca. A large part of the nutrient absorption was occurred during vegetative growth. Also, There was no difference between bark and rockwool in the solution culture due to the improvement of poor dispersion of nutrient solution in bark.

  • PDF

Growth, Development, and Morphological Characteristics of Echinochloa colona (Echinochloa colona의 생장(生長), 발육(發育) 및 형태적(形態的) 특징(特徵))

  • Chun, J.C.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • The growth, development, and morphological characteristics of Echinochtoa colons (L.) Link were determined through one life cycle. E. colons emerged 2 to 3 days after seeding (DAS) and reached the two leaf stage by 8 DAS. During the early growth stages, root length was greater than plant height, but the relationship was reversed from 4 weeks after seeding (WAS). Tillering started from the third leaf of the main culm as the sixth leaf on the main calm emerged. The unfolding of the leaves and tillering followed a regular pattern during the vegetative growth period. This resulted in the production of 19 tillers (5 primary, 12 secondary, 1 tertiary, and I nodal) at the 14-leaf stage. Shoot-root weight ratio was highest just before panicle initiation. The second spike from the top of the panicle was the shortest and produced the fewest seeds. Thereafter, spike length and the number of seeds per spike generally increased, the lower the position of the spike on the panicle. Seeds on the lower spikes weighed less and had lower germination ability than those from the upper spikes. Adventitious roots arose from the leaf sheath bases of a flowering stalk. The ability to produce adventitious roots was greater in a younger stalls than in an older stalk.

  • PDF

Roc10, a Rice HD-Zip transcription factor gene, modulates lignin biosynthesis for drought tolerance

  • Bang, Seung Woon;Lee, Dong-Keun;Jung, Harin;Chung, Pil Joong;Kim, Youn Shic;Choi, Yang Do;Suh, Joo-Won;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.159-159
    • /
    • 2017
  • Drought, a common environmental constraint, induces a range of physiological, biochemical and molecular changes in plants, and can cause severe reductions in crop yield. Consequently, understanding the molecular mechanisms of drought tolerance is an important step towards crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper class IV transcription factor gene, ${\underline{R}ice}$ ${\underline{o}utermost}$ ${\underline{c}ell-specific}$ gene 10 (Roc10), enhances drought tolerance and grain yield by increasing lignin accumulation in ground tissues. Overexpression of Roc10 in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both more effective photosynthesis and a reduction in water loss rate, compared with non-transgenic controls or RNAi transgenic plants. Importantly, Roc10 overexpressing plants had a higher drought tolerance at the reproductive stage of growth and a higher grain yield compared with the controls under field-drought conditions. Roc10 is mainly expressed in outer cell layers including the epidermis and the vasculature of the shoots, which coincides with areas of cell wall lignification. Roc10 overexpression elevated the expression levels of lignin biosynthetic genes in shoots, with a concomitant increase in the accumulation of lignin, while the overexpression and RNAi lines showed opposite patterns of lignin accumulation. We identified downstream target genes of Roc10 by performing RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses of shoot tissues. Roc10 was found to directly bind to the promoter of PEROXIDASEN/PEROXIDASE38, a key gene in lignin biosynthesis. Together, our findings suggest that Roc10 confers drought stress tolerance by promoting lignin biosynthesis in ground tissues.

  • PDF

Effect of Elevated $CO_2$ Concentration and Temperature on the Ecological Responses of Aster altaicus var. uchiyamae, Endangered Hydrophyte ($CO_2$농도와 온도 상승이 멸종위기식물 단양쑥부쟁이의 종생태적 반응에 미치는 영향)

  • Han, Young-Sub;Kim, Hae-Ran;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.169-180
    • /
    • 2012
  • Aster altaicus var. uchiyamae, endangered plants to grade II designated by the Ministry of Environment Korea, is only distributed in Gyeongsangbukdo, Chungcheongnamdo in Korea. In order to know the effects of elevated $CO_2$ concentration and temperature on ecological responses of A. altaicus var. uchiyamae, this study was carried out in the control(ambient $CO_2$ + ambient temperature) and treatment(elevated $CO_2$ + elevated temperature) at glasshouse. As a result, germination rate of A. altaicus var. uchiyamae was higher in control than in treatment. Period of alive leaf was longer in control than in treatment. Period of blooming and seed maturity was faster in control than in treatment. Shoot and root weight were heavier in control than in treatment. No. of inflorescence per plant and seed per inflorescence was higher in control than in treatment. Weight of inflorescence per plant, seed per inflorescence and one seed was heavier in control than in treatment. These results indicate that ecological responses of A. altaicus var. uchiyamae may be more negatively affected by elevated $CO_2$ and temperature except for phenological responses of that may be delayed under future global warming situation.

Research on Ginseng Production During the Past 20 years (인삼재배 분야의 과거 20년 연구)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.472-500
    • /
    • 1996
  • Researches on mineral nutrition, physiology and phyrsiological diseases, . cultivaction methods. brceding. pest control quality management and extension during 1976-1995 in Korea were reviewed Review in brceding and pest control was restricted to the researches directely related to cultivaction. Mineral nulrient up take. partion and varicos factors such as top dreasing. Light intersity etc. and interrelationship between minerals were investigated. Top dressing was not effective due to low minera1 requorement Physiological characteristics on tempelature light and water were well elucidated and applied to assess traditional cultivation method and its inovation. Photosyrnthetic pigments. light harvest proteins and activity of related enzymes were studied. In nitrogen metabolism arginine, praline, ammonium, threonine appeared to have important role in re growth of shoot Saponin metabolism was studied in relation to growth and new ginsenosides were found but physiological role of saponin was not clearly elucidated yet Endogenous growth regulators were reported and various erogenous growth regulators were studied for growth stimulation. short stem and seed pruning etc. Various physiological diseases were investigated for cause and control measures were established. Water culture was little studied Forest culture was studied but not retched the recommendable stage Drip irrigation straw mulching. seasonal shading and soil preparation method including soil fertility adjustment were established for practical application. Shading materials completely changed to polyethylene net and materials of polymers The research on ginseng cultivation in paddy field opened the way to establish the permanent ginseng cultivation plantation Ginseng harvester and seeder were developed in the late 1950s. Transplanted and many other machines were developed in the early 1990s. In ginseng breeding only pure line selection was of practical significance several verities were at the stage of seed propagation at ginseng plantations. Mutation breeding (${\gamma}$-ray. X-ray chemicals) was not successful. The research on plantlet formation through tissue culture was a little progressed but still far behind to vegetative propagation. Disease control research was concentrated in the isolation and identification of pathogans. their ecological charactelistics and biological control and soil humigation. Potato root rot nematodes was found and control method was established. Insect and small animal control research was greatly progresses in identification, ecological investigation, and ecological and physical control. Weed control was less important due to the development of mulching method of ridge and ditch. Quality factors of raw ginseng in relation to red ginseng process were extensively studied. Traditional quality measures were elucidated in accordance with modern analytical chemistry resulting in the importance of peptides in the centrat part rather than ginsenosides For large root production growth promoting rootzone micrcorganisms (PGPRM) were isolated and active compounds were identified. Field test on PGPRM was on going. Varictus methods formality improvement through cultivation were developed. Management research of ginseng production was rare Extension was active throuch official and private organizations and through workshop for the extension specialists, and direct lectures to grower's. Extension services made the researcher to understand the existing problems at grower's fields. Research environment for ginseng production was in prime time only for three years when Korea Ginseng Research Institute was established then gradually aggravated.

  • PDF

Plant Regeneration of Hybrid Poplars Through Nodule Culture System (Nodule 배양방법(培養方法)을 이용(利用)한 잡종(雜種)포플러의 식물체(植物體) 재분화(再分化))

  • Chung, Kyung Ho;Chun, Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.1-8
    • /
    • 1991
  • Developmental micropropagation method and somatic embryogenesis for hybrid poplars, Populns ehrarnericana Eco28, P. nigra ${\times}$ P. moximowiczii 62-9, were established using nodule culture system. Calli of Eco28 and 62-9 clone were initiated from leaf explant on the medium with 0.5mg/l and 2.0mg/l 2, 4-D, respectively. Cell suspension culture was established from callus derived from leaf explant culture. When suspended on MS medium with optimal combination of BA and NAA fine nodules were obtained after 2 weeks of culture. For shoot regeneration, nodules were transferred into liquid and agar solidified medium. Numerous shoots were regenerated from nodules of 62-9 on liquid media. Organogenesis was effectively achieved on agar solidified regeneration media containing different concentrations of BA and adenine sulfate. Average numbers of 27 and 24 shoots per nodule were induced from 62-1 and Eco28 clones after 8 weeks of culture, respectively. In addition, somatic embryogenesis also occurred in the same regeneration medium. This procedure can be applied to vegetative propagation, utilization of somaclonal variation, production of secondary metabolite and materials of biotechnology research.

  • PDF