• Title/Summary/Keyword: Vegetation value

Search Result 706, Processing Time 0.053 seconds

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Ecological Division of Habitats by Analysis of Vegetation Structure and Soil Environment -A Case Study on the Vegetation in the Kimpo Landfills and Its Periphery Region- (식생구조와 토양환경 분석을 통한 서식처의 생태학적 구분 -김포매립지와 그 근린 지역의 식생을 사례로 -)

  • Kim, Jong-Won;Yong-Kyoo Jong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.307-321
    • /
    • 1995
  • Division of ecoregions having respective functions was attempted through quantitative and qualitative analysis on vegetation diversity, and heterogeneity and on soil environment of the study sites. Field research was carried out in a square of 81 ㎢ around Andongpo (126°38'E, 37°30'N), Kimpo-gun, Kyonggi provice. Conventional methods applied are as follows: classical syntaxonomy by the Zurich-Montpellier School, interpolation method to determine the degree of diversity, heterogeneity and distribution pattern of vegetation, and correlation analysis between soil properties and plant communities. 41 plant communities were identified and composed of 6 forests, 4 mantle and 31 herb communities including 6 saltmarsh plant communities. In a mesh, number of plant communities was highly correlated to the number of species. The highest number of plant community and species was 25 communities·km-2·mesh-1 and 381 species· km-2·mesh-1 ,and the highest value of vegetation heterogeneity was 28.1 species· community-1·mesh-1. Their lowest numbers were 4 communities·km-2·mesh-1. and 28 species·km-2·mesh-1. and 7 species·community-1·mesh-1, respectively. Contour map on vegetation diversity and heterogeneity enabled us to establish two regions; coastal and inland vegetation. Isoline 〔150〕,〔10〕and〔10〕and〔15〕on the species diversity, the community diversity and the vegetation heterogeneity, respectively, were regarded as ecolines in the study area. Cl- content was recognized as the most important factor from correlation analysis between soil properties. Ordination of sites indicated that the study area be divided into two edaphic types: inland and coastal habitats. It was considered that the extent of desalinization in soil played a major role in determining the species composition in the reclamed area. By matching edaphic division of habitats with division of vegetation structures, designation of ecoregion was endorsed. The approach of current study was suggested as an effective tool to implement an assessment of the vegetation dynamics by the disparity of natural environment and anthropogenic interferences.

  • PDF

The classification of biotope type and characteristics of naturalized plant habitat on the coastal sand dune ecosystem

  • Lee, Jeom-Sook;Jeon, Ji-Young;Ihm, Byung-Sun;Myeong, Hyeon-Ho
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • Coastal sand dune systems are particularly fragile and threaten the environment. However, these systems provide fundamental ecosystem services to the nearby urban areas, acting, for example, as protective buffers against erosion. In this paper, we attempt to classify the biotope types of coastal sand dune ecosystems and select an index for the assessment of the conservation value. The types of biotopes are categorized based on the vegetation map; floras are examined in order to research the effects of hinterlands on coastal sand dunes. In addition, a naturalization rate and an urbanization index for each biotope type in hinterlands are analyzed. In the ecosystem of coastal sand dunes, the urbanization index and naturalization rate shows a higher value in sand dunes with areas of road, residential, and idle land in farm villages, rice fields, and fields. On the contrary, a lower value in the urbanization index and naturalization rate is present when typical biotope types, such as sand dune vegetation and natural Pinus thunbergii forests, are widely distributed. Based on these results, urbanization index and naturalization rate should be used as critical indices for the assessment of the ecosystem of costal sand dunes.

Forage Value and Ecological Characteristics of Grassland Vegetation by Herbicide Treatments in Rumex acetosella Dominated Pasture (애기수영 ( Rumex acetosella ) 우점초지에서 제초제 처리에 의한 초지식생의 사료가와 생능적 특성)

  • 박근제
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • With a purpose of finding out the influences of herbicide treatment on the forage value and ecological characteristics of grassland vegetations in the Rumex acetosella dominated pasture, this trial was arranged as a randomized block design with three treatments[1) Seeding(cntrol), 2)dicamba 4${\ell}$/ha+seeding+dicamba 4 ${\ell}$/ha and 3) dicamba 4${\ell}$/ha+lime+seeding+dicamba 4 ${\ell}$/ha], and conducted in Youngam, Jeonnam Province ftom June, 1995 to October, 1996. In the Rumex acetosella dominated pasture, the treatment of dicamba 4${\ell}$/ha+ lime+seeding+dicamba 4${\ell}$/ha was improved to the most desirable grassland vegetation with pasture plants of 87%. In the renovated grassland, the life forms of Hemicryptophytes increased greatly by 57.0%, on the other hand Geophytes was much more decreased by 56.8% than those of low productive grassland. The similarity coefficients between grassland vegetation groups were greatly affected by botanical composition. The forage value of standing crop in the renovated grassland with 6.56 was much more increased than low productive grassland with 2.76. The treatment of dicamba 4${\ell}$/ha+lime+ seedingdicamba 4${\ell}$/ha increased 2 1% of dry mattaer yield, and were high 18- 19% of energy (NEL and TDN) productivity than those of the control(seeding), respectively.

  • PDF

Classification of Forest Vegetation for a Forest Genetic Resource Reserve in Mt. Seondalsan, Bongwha (봉화 선달산 산림유전자원보호구역의 산림식생 유형)

  • Lee, Jeong Eun;Lee, Cheul Ho;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the structure of forest vegetation in Mt. Seondalsan, Bongwha-gun, was analyzed. Vegetation data were collected in 137 quadrat plots using the Z-M phytosociological method from June to October 2018. These data were analyzed using vegetation classification, importance value,and species diversity. Consequently, vegetation was classified as a Quercus mongolica community group that was divided into four communities: Cornus controversa, Phlomis umbrosa, Pinus densiflora, and Q. mongolica communities. The C. controversa community was subdivided into Magnolia sieboldii and Parthenocissus tricuspidata groups; the P. densiflora community was divided into Vaccinium hirtum var. koreanum, Quercus variabilis, and P. densiflora groups. In the C. controversa community, the M. sieboldii group was divided into the Acer mandshuricum and M. sieboldii subgroups, whereas the P. tricuspidata group was divided into the Larix kaempferi, Pinus koraiensis, and P. tricuspidata subgroups. In the P. densiflora community, the V. hirtum var. koreanum group was divided into the Rhododendron micranthum and V. hirtum var. koreanum subgroups. According to importance value analysis, C. controversa, L. kaempferi, P. koraiensis, Q. mongolica, Acer pictum subsp. mono, P. densiflora, and Q. variabilis were mainly indicated to have high value in the tree layer. The species diversity of Mt. Seondalsan was 1.969, which was greater than that of another Forest Genetic Resource Reserve.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

Shallow Landslide Assessment Considering the Influence of Vegetation Cover

  • Viet, Tran The;Lee, Giha;Kim, Minseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% of observed stable cells being well predicted.

Impact Assessment of Vegetation Carbon Absorption and Economic Valuation Under Long-term Non-executed Urban Park Development (장기미집행공원 개발에 따른 도시 식생 탄소 흡수량에 미치는 영향 및 경제적 가치 평가)

  • Sung, Woong-Gi;Choi, Jae-Yeon;Yu, Jae-Jin;Kim, Dong-Woo;Son, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.361-371
    • /
    • 2020
  • Since the implementation of the sunset law in 2020, concerns have been raised over the reckless development of long-term non-executed urban parks. In this study, the FSDAF method and CASA-NPP model were used to evaluate the annual average NPP of long-term non-executed urban parks in Seoul. Based on this, the carbon loss and economic value were assessed under five development scenarios. The total NPP value of long-term non-executed urban parks, except for the greenbelt area in Seoul, was 4,892.18 t C. In the first scenario, the NPP and cost were 4,892.18 t C of vegetation carbon and 1.18 billion won, 2,548.55 t C of vegetation carbon and 615 million won in the second scenario, 238.94 t C of vegetation carbon and 58 million won in the third scenario, 848.38 t C of vegetation carbon and 205 million won in the fourth scenario, and 1,596.00 t C of vegetation carbon and 385 million won in the fifth scenario. These results are meaningful for evaluating vegetation carbon and economic value loss according to five different development scenarios. The results of this study are expected to be useful for the preparation of measures to minimize the impact of the development of long-term non-executed urban parks.

Soil Properties Under Different Vegetation Types in Chittagong University Campus, Bangladesh

  • Akhtaruzzaman, Md.;Roy, Sajal;Mahmud, Muhammad Sher;Shormin, T.
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • Soil physical and chemical properties at three layers such as top (0-10 cm), middle (10-20 cm) and bottom (20-30 cm) layers under three different vegetation types were studied. Soil samples were collected from Acacia forest, vegetable and fallow lands of Chittagong university campus, Chittagong, Bangladesh. Results showed that sand was the dominant soil particle followed by clay and silt fractions in all soil depths under different vegetation types. Soils of fallow land showed the highest values of bulk density while forest soils had the lowest values at three depths. Acacia forest soil having lowest values of dispersion ratio (DR) is less vulnerable while fallow soil with highest DR values is more vulnerable to soil erosion. The lower pH value at all soil layers in three ecosystems represented that soils under study are acidic in nature. Contents of organic matter, total nitrogen, exchangeable cations (Ca2+, Mg2+, K+ and Na+) and cation exchange capacity (CEC) were observed higher in Acacia forest soils compared to vegetable and fallow soils. Only soils of vegetable land had higher level of available phosphorus in three layers than that of other two land covers. The study also revealed that different soil properties were observed in three different vegetation types might be due to variation in vegetation and agronomic practices.

An Experimental Study on Velocity Profile in a Vegetated Channel (식생수로의 유속분포에 관한 실험적 연구)

  • Kwon, Do Hyun;Park, Sung Sik;Baek, Kyung Won;Song, Jai Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.957-960
    • /
    • 2004
  • From a water-environmental point of view, with a change of understanding and concern about vegetation, it changes that vegetation acts as stability of channel and bed, providing habitats and feed for fauna, and means improving those with appreciation of the beautiful but resistant factor to the flow So, it becomes important concern and study subjects that turbulent structure by vegetation, shear stress and transport as well as roughness and average velocity by vegetation. But from a hydraulic point of view, vegetation causes resistance to the flow and can increase the risk of flooding, Therefore, this thesis concern the flow characteristics in vegetated open channels. According to the experimental results, $z_0$ was on an average $0.4h_p$ in a vegetated open channel. So, the elevation corresponding to zero velocity in a vegetated channel was the middle of roughness element. The limit for logarithmically distributed profile over the roughness element was from $z_0$ to $0.80h_{over}$ for a vegetated channel. Among the existing theory, the method of Kouwen et al.(1969), Haber(1982), and El-Hakim and Salama(1992) except Stephan(2001) gave a very good value compared to the measured velocity profile.

  • PDF