• 제목/요약/키워드: Vegetation monitoring

검색결과 561건 처리시간 0.025초

Correlation Analysis of MODIS Vegetation Indices and Meteorological Drought Indices for Spring Drought Monitoring

  • Park, Jung-Sool;Kim, Kyung-Tak
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.80-83
    • /
    • 2008
  • Diverse researches using vegetation index have been carried out to monitor spring droughts that have frequently occurred since 2000. The strength of the drought monitoring using vegetation index lies in that it can reflect characteristics of satellite images: large area coverage, cyclicity, and promptness. However, vegetation index involve uncertainly caused by diverse factors that affect vegetation stress. In this study, multi-temporal vegetation index is compared with the most representative meteorological drought indices like PSDI, SPI. Based on the results from analyses, usability of vegetation index as a tool of drought analysis is proposed.

  • PDF

관리에 따른 마을비보숲의 식생 변화 - 진안 서촌 마을비보숲과 원연장 마을비보숲을 사례로 - (The Monitoring of Vegetation Change in Complementary Village Forest according to Management - Centered on Complementary Village Forests of Seochon and Weonyeonjang in Jinan County -)

  • 박재철;장효동
    • 농촌계획
    • /
    • 제24권2호
    • /
    • pp.69-78
    • /
    • 2018
  • The purpose of this study is on identifying vegetation change through monitoring representative complementary village forests according to different management. For this, two of complementary village forests around Mai mountain which many ones remain were selected. Those are complementary village forests of Seochon and Wonyeonjang. Seochon forest is a representative one which is managed naturally and Wonyeonjang one is a representative one which is managed artificially. The field survey for monitoring was preformed in 2002 and 2007, 2016. D(Dominant degree) and S(Sociability degree) were measured by Brown-Blanquet's method in field survey. Through the analysis and review of survey data, the change of species richness, appearing species characteristics, species composition and layer structure etc. according to different management was monitored. As a result, it can be seen that natural succession has increased species diversity, improved vegetation structure and circulation of complementary village forest. On the other hand, excessive anthropomorphic management was found to be detrimental to the health of the forests and to the vegetation structure and species composition. And it was found that excessive management threaten sustainability and periodical proper management is necessary. Through this review, the useful management direction of complementary village forests was suggested.

복원사업 후 마을비보숲의 장기 식생 변화 - 완주군 두방 마을비보숲을 사례로 - (Long-term Vegetation Change of the Complementary Village Forest after Restoration Project - Centered on the Village Complementary Forest of Wanju Dubang Village -)

  • 박재철;두은
    • 농촌계획
    • /
    • 제25권3호
    • /
    • pp.129-139
    • /
    • 2019
  • The purpose of this study is to monitor the long-term vegetation change of the village complementary forest after restoration. Based on the monitoring in 2010, six years after the restoration project in 2004, the monitoring of the complementary forest in Dubang village in 2019 after 9 years was conducted. This study identifies the change of species diversity and structure, growth, vegetation coverage, structural quality etc. and succession through long-term monitoring. For this, field survey was conducted in 2003 and 2010, 2019. The results demonstrate significant increase of species diversity and multi-layer structure and progress of natural succession. Overall, Part I is considered to be a quasi-natural complementary village forest, which has a natural balance between natural vegetation that have remained in nature for a long time and anthropogenic vegetation, revealing the coexistence of nature and humanity. It means ecological structure and function have improved. Part II should be restored to the lost part and adaptive management rather than excessive management should be carried out to leave natural succession.

음식쓰레기를 활용한 비탈면 녹화기술의 식생기반재 배합비율에 관한 연구 (A Study on the Mixing Ratio of Food Waste on Slope Re-vegetation Base Materials)

  • 조동길;전기성;심윤진;김덕호;도종남;박미영
    • 한국환경복원기술학회지
    • /
    • 제18권6호
    • /
    • pp.215-226
    • /
    • 2015
  • This study introduced food waste into re-vegetation base materials for surface loss recovery of carry-away highway cut slope. The object of this study is to derive the mixing ratio of food waste by conducting a test installation, monitoring, analysis and evaluation for recovery of carry-away highway cut slope. The following items were investigated and analyzed each experimental zone to draw mixing ratio of re-vegetation base materials and food waste : the physical and chemical properties of the vegetation base materials, soil-hardness, soil-humidity, left out and the collapsed point, established number of trees, species richness of grass species and tree species, coverage, pest status, and invasion of disturbance species. The re-vegetation method was evaluated by each experiment zone which has different mixing ratio. As a result, experiment zone A was rated 45 points out of 60 rating points as the best re-vegetation method. However, this study result has been derived from one construction and short-term monitoring. In order to derive the suitable and dependable mixing ratio, conducting an objective re-vegetation method evaluation and long-term experiment and monitoring is required.

NOAA/AVHRR 자료 응용기법 연구 - 운정.지표온도, 반사도, 해수면 온도, 식생지수, 산불, 홍수 분석 - (A Study on the Application of NOAA/AVHRR Data -Analysis of cloud top and surface temperature,albedo,sea surface temperature, vegetation index, forest fire and flood-)

  • 이미선;서애숙;이충기
    • 대한원격탐사학회지
    • /
    • 제12권1호
    • /
    • pp.60-80
    • /
    • 1996
  • AVHRR(Advanced Very High Resolution Radiometer) on NOAA satellite provides data in five spectral, one in visible range, one in near infrared and three in thermal range. In this paper, application of NOAA/AVHRR data is studied for environment monitoring such as cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index, forest fire, flood, snow cover and so on. The analyses for cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index and forest fire showed reasonable agreement. But monitoring for flood and snow cover was uneasy due to the limitations such as cloud contamination, low spatial resolution. So this research had only simple purpose to identify well-defined waterbody for dynamic monitoring of flood. Based on development of these basic algorithms, we have a plan to further reseach for environment monitoring using AVHRR data.

식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교 (Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring)

  • 김예슬;박노욱
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1209-1219
    • /
    • 2019
  • 지속적인 식생 모니터링을 위해서는 다중 위성자료의 시간 및 공간해상도의 상호 보완적 특성을 융합한 높은 시공간해상도에서의 식생지수 생성이 필요하다. 이 연구에서는 식생 모니터링에서 다중 위성자료의 시공간 융합 모델에 따른 시계열 변화 정보의 예측 정확도를 정성적, 정량적으로 분석하였다. 융합 모델로는 식생 모니터링 연구에 많이 적용되었던 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM)과 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM)을 비교하였다. 예측 정확도의 정량적 평가를 위해 시간해상도가 높은 MODIS 자료를 이용해 모의자료를 생성하고, 이를 입력자료로 사용하였다. 실험 결과, ESTARFM에서 시계열 변화 정보에 대한 예측 정확성이 STARFM보다 높은 것으로 나타났다. 그러나 예측시기와 다중 위성자료의 동시 획득시기의 차이가 커질수록 STARFM과 ESTARFM 모두 예측 정확성이 저하되었다. 이러한 결과는 예측 정확성을 향상시키기 위해서는 예측시기와 가까운 시기의 다중 위성자료를 이용해야 함을 의미한다. 광학영상의 제한적 이용을 고려한다면, 식생 모니터링을 위해 이 연구의 제안점을 반영한 개선된 시공간 융합 모델 개발이 필요하다.

시화 갯벌식생범위의 시-공간적 변이 분석 (The Analysis of Temporal and Spatial Variation on the Vegetation Area of the Siwha Tidat Flat)

  • 정종철
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.349-356
    • /
    • 2011
  • This research is aim to analyze of changing landscape and according to phenological cycle from image information of coastal environment obtained by multi-media were analyzed by camera and satellite image. The digital camera and satellite image were used for tidal flat vegetation monitoring during the construction of Sihwa lake. The vegetation type and phenological cycle of Sihwa tidal flat have been changed with the Sihwa lake ecosystem. The environment changes of Sihwa tidal flat area and ecological change were analyzed by field work digital camera images and satellite images. The airborne, UAV and satellite images were classified with the changed elements of coastal ecological environment and tidal flat vegetation monitoring carried out the changed area and shape of vegetation distribution with time series images.

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • 대한원격탐사학회지
    • /
    • 제20권1호
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

Feasibility of Vegetation Temperature Condition Index for monitoring desertification in Bulgan, Mongolia

  • Yu, Hangnan;Lee, Jong-Yeol;Lee, Woo-Kyun;Lamchin, Munkhnasan;Tserendorj, Dejee;Choi, Sole;Song, Yongho;Kang, Ho Duck
    • 대한원격탐사학회지
    • /
    • 제29권6호
    • /
    • pp.621-629
    • /
    • 2013
  • Desertification monitoring as a main portion for understand desertification, have been conducted by many scientists. However, the stage of research remains still in the level of comparison of the past and current situation. In other words, monitoring need to focus on finding methods of how to take precautions against desertification. In this study, Vegetation Temperature Condition Index (VTCI), derived from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), was utilized to observe the distribution change of vegetation. The index can be used to monitor drought occurrences at a regional level for a special period of a year, and it can also be used to study the spatial distribution of drought within the region. Techniques of remote sensing and Geographic Information System (GIS) were combined to detect the distribution change of vegetation with VTCI. As a result, assuming that the moisture condition is the only main factor that affects desertification, we found that the distribution of vegetation in Bulgan, Mongolia could be predicted in a certain degree, using VTCI. Although desertification is a complicated process and many factors could affect the result. This study is helpful to provide a strategic guidance for combating desertification and allocating the use of the labor force.

도시 녹지공간 식생 모니터링을 위한 무인항공기 활용방안 (Application of UAV for Vegetation Monitoring in Urban Green Space)

  • 송원경
    • 한국환경복원기술학회지
    • /
    • 제22권1호
    • /
    • pp.61-72
    • /
    • 2019
  • With the diversification of research using UAV(Unmanned Aerial Vehicle)s, the possibility of remote sensing research for urban green spaces is increasing. UAVs can be used as an investigation method to monitor the successful construction of the park and the planting of vegetation since its creation. This study was carried out to investigate UAVs utilization of urban green space monitoring in Dosol Square. It was photographed three times on May 21, July 13, and September 16, 2018 using DJI Phantom3 pro, Inspire2, and Parrot Sequoia multispectral camera. Orthographic images were overlaid on the planting plan of the site and the construction results were checked, the change of vitality of the plantation area was analyzed by NDVI(Normalized Difference Vegetation Index) and SAVI(Soil Adjusted Vegetation Index). As a result, it was confirmed that the UAVs are very effective for surveying the view of the urban green space after the construction and recording the results, which can be grasped quantitatively by overlaying the planting plan map. UAVs are more likely to be used in terms of monitoring vegetation vitality. It is interpreted that SAVI is better than NDVI in the green space just after composition. Chionanthus retusus and Pinus strobus were analyzed for their low level of vitality, and partially damaged and their vitality was lowered. In addition, there was difficulty in grass planting area and flower garden due to drainage and summer drought problems. In the future, it is expected that orthoimage and multispectral data using UAVs will be useful in the early vegetation monitoring and management field of urban green spaces.