• Title/Summary/Keyword: Vegetation models

Search Result 213, Processing Time 0.028 seconds

Hyperspectral Remote Sensing for Agriculture in Support of GIS Data

  • Zhang, Bing;Zhang, Xia;Liu, Liangyun;Miyazaki, Sanae;Kosaka, Naoko;Ren, Fuhu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1397-1399
    • /
    • 2003
  • When and Where, What kind of agricultural products will be produced and provided for the market? It is a commercial requirement, and also an academic questions to remote sensing technology. Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the hyperspectral remote sensing should do play a key role in crop growth investigation at national, regional and global scales. In the past five years, Chinese academy of sciences and Japan NTT-DATA have made great efforts to establish a prototype information service system to dynamically survey the vegetable planting situation in Nagano area of Japan mainly based on remote sensing data. For such concern, a flexible and light-duty flight system and some practical data processing system and some necessary background information should be rationally made together. In addition, some studies are also important, such as quick pre-processing for hyperspectral data, Multi-temporal vegetation index analysis, hyperspectral image classification in support of GIS data, etc. In this paper, several spectral data analysis models and a designed airborne platform are provided and discussed here.

  • PDF

Development for Wetland Network Model in Nakdong Basin using a Graph Theory (그래프이론을 이용한 낙동강 유역의 습지네트워크 구축모델 개발)

  • Rho, Paikho
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • Wetland conservation plan has been established to protect ecologically important wetlands based on vegetation integrity, spatial distribution of endangered species, but recently more demands are concentrated on the landscape ecological approaches such as topological relationship, neighboring area, spatial arrangements between wetlands at the broad scale. Landscape ecological analysis and graph theory are conducted to identify spatial characteristics related to core nodes and weak links of wetland networks in Nakdong basin. Regular planar model, which is selected for wetland networks, is applied in the Nakdong basin. The analysis indicates that 5 regional groups and 4 core wetlands are extracted with 15km threshold distance. The IIC and PC values based on the binary and probability models suggest that the wetland group C composed of main stream of Nakdong river and Geumho river is the most important area for wetland network. Wetland conservation plan, restoration projected of damaged and weak links between wetlands should be proposed through evaluating the node, links, and networks from wetlands at the local to the regional scale in Nakdong basin.

Distributed Rainfall-Runoff Modeling Using GIS (GIS를 이용한 분산형 강우-유형 모형의 개발)

  • 김경숙;박종현;윤기준;이상호
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • This study is conducted to eveluate the potential of a GIS to assist an application problem. GIS has been applied to rainfall-runoff modeling over Soyang area. Various rainfall-runoff models have been developed over the years. A distributed rainfall-runoff model is selected because it considers the topographic characteristics over the basin. GIS can handle the spatial data to enhance the modeling. GRASS-a public domain GIS S/W-is used for GIS tools. Digital database is generated, including soil map, vegetation map, digital elevation model, basin and subbasin map, and water stream. The inpu data for the model has been generated and manupulated using GIS. The database, model and GIS are integrated for on-line operation. The inflow hydrographs are tested for the flood of Sept., 1990. This shows the promising results even without the calibration.

The Study on the Extraction of the Distribution Potential Area of Debris Landform Using Fuzzy Set and Bayesian Predictive Discriminate Model (퍼지집합과 베이지안 확률 기법을 이용한 암설사면지형 분포지역 추출에 관한 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.105-118
    • /
    • 2017
  • The debris slope landforms which are existent in Korean mountains is generally on the steep slopes and mostly covered by vegetation, it is difficult to investigate the landform. Therefore a scientific method is required to come up with an effective field investigation plan. For this purpose, the use of Remote Sensing and GIS technologies for a spatial analysis is essential. This study has extracted the potential area of debrisslope landform formation using Fuzzy set and Bayesian Predictive Discriminate Model as mathematical data integration methods. The first step was to obtain information about debris locations and their related factors. This information was verified through field investigation and then used to build a database. In the second step, the map that zoning the study area based on the degree of debris formation possibility was generated using two modeling methods, and then cross validation technique was applied. In order to quantitatively analyze the accuracy of two modeling methods, the calculated potential rate of debrisformation within the study area was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). As a result, the prediction accuracy of Fuzzy set model wes 83.1% and Bayesian Predictive Discriminate Model wes 84.9%. It showed that two models are accurate and reliable and can contribute to efficient field investigation and debris landform management.

A Comparative Analysis on the Pollination Potential Environment of Apis millifera and Bombus ignitus Using the Maxent Model - Focused on Seoul - (Maxent 모델을 이용한 호박벌과 양봉꿀벌의 수분 잠재환경 비교 분석 - 서울시를 중심으로 -)

  • Kim, Yoon-Ho;Cho, Yong-Hyeon;Bae, Yang-Seop;Kim, Tae-Jong;Son, In-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The honey bee has a crucial ecological status for maintaining the natural ecology system. Pollination mediations by honey bees are recognized as an efficient way to enhance the quality of biological diversity and green areas in the nature and the urban ecological system. However, the population of bee around the world is decreasing and we do not know exactly how bees react to the physical environment in the urban area. This study is a basic research for the improvement of pollination services in the Korean urban ecological system. It aims to induce and review environmental variables which have high relations with the activities of pollination mediation insects in the urban area. The study established a Maxent model using five urban environmental variables that reflect the ecology of Bombus ignitus and the place information where Bombus ignitus appears in 18 spots of Seoul city, and compared with previous research results on Apis millifera. Bombus ignitus preferred places with more natural environments such as mountain forest areas and vicinities of streams. They preferred Stratified Tree Area the most among the vegetation types existing in the urban area. Comparing chicken models, both species saw their response value drop as the building coverage rose. In the case of Apis millifera and Bombus ignitus variables, the response value of both species was high in 10 out of 20 types. The result of this study is expected to provide basic information for improving the pollination services in the Korean urban area and to be utilized as the basic materials for the future urban planning.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Application and Evaluation of Remotely Sensed Data in Semi-Distributed Hydrological Model (준 분포형 수문모형에서의 원격탐사자료의 적용 및 평가)

  • Kim, Byung-Sik;Kim, Kyung-Tak;Park, Jung-Sool;Kim, Hung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.144-159
    • /
    • 2006
  • Hydrological models are tools intended to realistically represent the basin's complex system in which hydrological characteristics result from a number of physical, vegetative, climatic, and anthropomorphic factors. Spatially distributed hydrological models were first developed in the 1960s, Remote sensing(RS) data and Geographical Information System(GIS) play a rapidly increasing role in the field of hydrology and water resources development. Although very few remotely sensed data can applied in hydrology, such information is of great. One of the greatest advantage of using RS data for hydrological modeling and monitoring is its ability to generate information in spatial and temporal domain, which is very crucial for successful model analysis, prediction and validation. In this paper, SLURP model is selected as semi-distributed hydrological model and MODIS Leaf Area Index(LAI), Normalized Difference Vegetation Index(NDVI) as Remote sensing input data to hydrological modeling of Kyung An-chen basin. The outlet of the Kyung An stage site was simulated, We evaluated two RS data, based on ability of SLURP model to simulate daily streamflows, and How the two RS data influence the sensitivity of simulated Evapotranspiration.

  • PDF

Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery

  • Kang, Jeong-Gyun;Ryu, Chan-Seok;Kim, Seong-Heon;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong-Hyeon;Kim, Dong Eok;Ku, Yang-Gyu
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.273-280
    • /
    • 2016
  • Purpose: This experiment was conducted to detect water stress in terms of the moisture content of cucumber seedlings under water stress condition using a hyperspectral image acquisition system, linear regression analysis, and partial least square regression (PLSR) to achieve a non-destructive measurement procedure. Methods: Changes in the reflectance spectrum of cucumber seedlings under water stress were measured using hyperspectral imaging techniques. A model for estimating moisture content of cucumber seedlings was constructed through a linear regression analysis that used the moisture content of cucumber seedlings and a normalized difference vegetation index (NDVI). A model using PLSR that used the moisture content of cucumber seedlings and reflectance spectrum was also created. Results: In the early stages of water stress, cucumber seedlings recovered completely when sub-irrigation was applied. However, the seedlings suffering from initial wilting did not recover when more than 42 h passed without irrigation. The reflectance spectrum of seedlings under water stress decreased gradually, but increased when irrigation was provided, except for the seedlings that had permanently wilted. From the results of the linear regression analysis using the NDVI, the model excluding wilted seedlings with less than 20% (n=97) moisture content showed a precision ($R^2$ and $R^2_{\alpha}$) of 0.573 and 0.568, respectively, and accuracy (RE) of 4.138% and 4.138%, which was higher than that for models including all seedlings (n=100). For PLS regression analysis using the reflectance spectrum, both models were found to have strong precision ($R^2$) with a rating of 0.822, but accuracy (RMSE and RE) was higher in the model excluding wilted seedlings as 5.544% and 13.65% respectively. Conclusions: The estimation model of the moisture content of cucumber seedlings showed better results in the PLSR analysis using reflectance spectrum than the linear regression analysis using NDVI.