• Title/Summary/Keyword: Vegetation identification

Search Result 46, Processing Time 0.027 seconds

Identification of riparian vegetation using Spectral Mixture Analysis of multi-temporal Landsat Imagery

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.175-177
    • /
    • 2003
  • To monitor riparian wetlands as one of complex natural ecosystems using remotely sensed data, we need to concurrently consider vegetation, soil and water which constitute complicated wetland ecosystems. To identify riparian distribution we adopted linear Spectral Mixture Analysis in order to improve identification accuracy of riparian areas. This study has indicated that linear SMA adopting tasseled cap endmember selection is an enhanced routine for Identification of riparian wetlands and phenologically autumn imagery is more appropriate to detect riparian vegetation in the Paldang water catchment area.

  • PDF

Identification of two common types of forest cover, Pinus densiflora(Pd) and Querqus mongolica(Qm), using the 1st harmonics of a Discrete Fourier Transform

  • Cha, Su-Young;Pi, Ung-Hwan;Yi, Jong-Hyuk;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.329-338
    • /
    • 2011
  • The time-series normalized difference vegetation index (NDVI) product has proven to be a powerful tool to investigate the phenological information because it can monitor the change of the forests with very high time-resolution, This study described the application of the DFT analysis over the 9 year MODIS data for the identification of the two types of vegetation cover, Pinus densiflora(Pd) and Querqus mongolica(Qm) which are dominant species of evergreen and broadleaved deciduous forest, respectively, The total number of samples was 5148 reference cycles which consist of 2160 Pd and 2988 Qm. They were extracted from the pixel-based MODIS scenes over the 9 years from 2000 to 2008 of South Korea. The DFT analysis was mainly focused on the 0th and $1^{st}$ harmonic components, each of which represents the mean value and the variation amplitude of the NDVI over the years, respectively. The $0^{th}$ harmonic values of the vegetation Pd and Qm averaged over the 9 years were 0.74 and 0.65, respectively. This implies that Pd has a higher NDVI than Qm. Similarly obtained $1^{st}$ harmonic values of Pd and Qm were 0.19 and 0.27, respectively. This can be intuitively understood considering that the seasonal variation of Qm is much larger than Pd. This distinctive difference of the $1^{st}$ harmonic value has been used to identify evergreen and deciduous forests. Overall agreement between the Fourier analysis-based map and the actal vegetation map has been estimated to be as high as 75%. This study found that the DFT analysis can be a concise and repeatable method to separate and trace the changes of evergreen and deciduous forest using the annual NDVI cycles.

The Identification and Vegetation Structure of Several Mountainous Wetlands in Dan-yang and Around Area (단양 및 주변 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong-Guk;Jeong, Jin-Yong;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This study was accomplished to identify and analyze vegetation structure of Mountainous Wetlands in Dan-yang and around area, and surveyed from September to November, 2006. 6 sites of total 16 potential Mountainous Wetlands by GIS based wetland forecasting system (Korea National Arboretum, 2006) were identified as wetlands throughout field survey by the indicators such as hydrology, soil and vegetation. By classification system of Korea National Arboretum (2006), types of wetlands were classified into 3 slope-types and 3 flat-types. To understand vegetation structure of wetlands, height, DBH (diameter at breast height), DI (Dominance Index), sociability and constancy were surveyed and the projection diagram and charts ware drawn. As results, Salix koreensis in woody plant layer and Persicaria thunbergiiin and Juncus effusus var. decipiens in herb layer were surveyed as broadly distributed species. The wetlands of Dan-yang around area were similar to those of Chung-ju around area, but the species of plants and hydrology conditions were different. This study is mainly focused on vegetation condition of Mountainous Wetlands. But, further studies on functional assessment for management and restoration of wetlands were necessary.

Linear Spectral Mixture Analysis of Landsat Imagery for Wetland land-Cover Classification in Paldang Reservoir and Vicinity

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil. And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of wetland land-covers in Paldang reservoir and vicinity (paldang Reservoir) using Landsat TM and ETM+ imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands 3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and water endmembers which are the main indicators of wetlands. To consider phenological characteristics of Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and a green vegetation (GV) endmember was subdivided into GV tree and GV herbaceous endmembers in fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate to classify wetland land-cover than spring's. The classification result using 4 endmember fractions of a fall image reached 85.2 and 74.2 percent of the producer's and user's accuracy respectively. This study shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in Paldang Reservoir.

Identification and characterization of fish breeding habitats on Lake Kyoga as an approach to sustainable fisheries management

  • Rebecca Walugembe Nambi;Abebe Getahun;Fredrick Jones Muyodi;John Peter Obubu
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.282-293
    • /
    • 2023
  • Nile perch and Nile tilapia are major commercial species in Uganda, and thus require continuous production. However, their production is impacted by anthropogenic activities such as fishing in breeding habitats. The aim of this study was to identify and characterize Nile perch and Nile tilapia fish breeding habitats on Lake Kyoga. Water quality, lake bottom, fish and vegetation type samples were collected from 20 sites in April of 2021 and 2022. Key informant interviews were conducted with experienced fishermen at five fish landing sites. The water quality parameters indicated significant difference within the sites using analysis of variance. Sandy and muddy bottom types were equally spread at 40% each by use of a pie chart. Fish gonads showed no significant difference among the 20 sites. Bivariate correlation analysis of the vegetation types indicated a strong negative correlation with Nile perch while Nile tilapia had a positive correlation. Principal component analysis of the water quality, fish gonads and habitat vegetation components cumulatively contributed 82.5% in characterizing a fish breeding habitat. Four sites for Nile perch and four sites for Nile tilapia were characterized as breeding sites on Lake Kyoga and are recommended for mapping and gazettement as breeding habitats for sustainable fisheries management.

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

Terrace Fields Classification in North Korea Using MODIS Multi-temporal Image Data (MODIS 다중시기 영상을 이용한 북한 다락밭 분류)

  • Jeong, Seung Gyu;Park, Jonghoon;Park, Chong Hwa;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

Inventory Development according to Aquatic Environment Fitness and Classification Characteristics of Plants for Urban Water Space (수환경 적응도에 따른 식물 목록 구축 및 도시 수 공간에 적용 가능한 식물 분류특성)

  • Li, Lan;Kwon, Hyo Jin;Kim, Hyeong Guk;Park, Mi Ok;Koo, Bonhak;Choi, Il Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.93-104
    • /
    • 2013
  • The purpose of this study was to develop a list of plants that adapted to the aquatic environment in urban areas based on the list of plants surveyed through literature review and field surveys, and to classify the types of vegetation according to the five categories of plant distributions set by the U.S. Fish and Wildlife Service (1988) in the aspect of the adaptability of plants to the aquatic environment. Results of the classification by category according to the adaptability to the aquatic environment for the plant species surveyed through literature review and field surveys showed that there are 45 species of OBL, 96 species of FACW, 66 species of FAC, and 94 species of FACU, totaling 650 species. In addition, a total of 50 species excluding exotic species, endangered species, and naturally introduced plants are proposed as appropriate plants for the urban aquatic environment that will be artificially constructed. The results of the study can be utilized as the basic information for maintaining diversity and stability of the ecosystem during the restoration of water ecology; they can serve as useful data for the development of an optimum vegetation model when planting in water spaces in the future and preparing proper planting plans for each space. In addition, it is believed that the information will be useful in wetland identification and evaluation by observing plant species that appear only in wetlands.

The Flora and Vegetation of Dokdo Island in Ulleung-gun, Gyeongsanbuk-do (독도의 식물상과 식생)

  • Park, Seon-Joo;Song, Im-Geun;Park, Seong-Jun;Lim, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.264-278
    • /
    • 2010
  • This study was carried out to describe the basic materials of the flora and vegetation for the conservation and management of the Dokdo ecosystem. The vegetation types were investigated by physionomy. 53 taxa of vascular plants were found, including 29 families, 48 genera, 49 species, 1subspecies, and 3 varieties. Among the investigated 53 taxa, it was recorded as follows: 2 Korean endemic plants included Sedum kamtschaticum var. takesimense M.Park and Campanula takesimana Nakai and 6 naturalized plants included Brassica juncea (L.) Czern., Sonchus oleraceus L., Bromus catharticus Vahl, Lepidium virginicumL., Chenopodium album L., and Ipomoea purpurea Roth. In particular, common morning glory (Ipomoea purpurea Roth) was reported for the first time in this survey of Dokdo. Based on physionomy, the main plant communities of Dokdo Island were Aster spathulifolius-Sedum oryzifolium community, Aster spathulifolius-Artemisia Japonica subsp. littoricola community, Fallopia sachalinensis-Cyrtomium falcatum community, Echinochloa crusgalli community, Echinochloa crusgalli var. oryzicola community. The debates have been continuing about a mis-identification of plants. To avoid this debate and manage naturalized and cultivated plants, taxonomist surveys and continual monitoring for the Island are required.