• Title/Summary/Keyword: Vegetation distribution

Search Result 1,018, Processing Time 0.029 seconds

Variation of Seasonal Groundwater Recharge Analyzed Using Landsat-8 OLI Data and a CART Algorithm (CART알고리즘과 Landsat-8 위성영상 분석을 통한 계절별 지하수함양량 변화)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.395-432
    • /
    • 2021
  • Groundwater recharge rates vary widely by location and with time. They are difficult to measure directly and are thus often estimated using simulations. This study employed frequency and regression analysis and a classification and regression tree (CART) algorithm in a machine learning method to estimate groundwater recharge. CART algorithms are considered for the distribution of precipitation by subbasin (PCP), geomorphological data, indices of the relationship between vegetation and landuse, and soil type. The considered geomorphological data were digital elevaion model (DEM), surface slope (SLOP), surface aspect (ASPT), and indices were the perpendicular vegetation index (PVI), normalized difference vegetation index (NDVI), normalized difference tillage index (NDTI), normalized difference residue index (NDRI). The spatio-temperal distribution of groundwater recharge in the SWAT-MOD-FLOW program, was classified as group 4, run in R, sampled for random and a model trained its groundwater recharge was predicted by CART condidering modified PVI, NDVI, NDTI, NDRI, PCP, and geomorphological data. To assess inter-rater reliability for group 4 groundwater recharge, the Kappa coefficient and overall accuracy and confusion matrix using K-fold cross-validation were calculated. The model obtained a Kappa coefficient of 0.3-0.6 and an overall accuracy of 0.5-0.7, indicating that the proposed model for estimating groundwater recharge with respect to soil type and vegetation cover is quite reliable.

The distribution of Jeju coastal sand dune plants and its restoration implications (제주 해안사구 식물 분포와 복원을 위한 의미)

  • Kim, Kee Dae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • The coastal dune ecosystem is one of the ecosystems under the most development pressure in Korea. Therefore, it is necessary to study the ecological location and related ecological phenomena of coastal dune plants, but related studies are lacking. Through this study, we intend to conduct research on the structure and restoration of dune plants, focusing on the coastal dunes in Jeju Island, which are affected by artificial development pressure and the continuous increase in tourists among many coastal dunes in Korea. Ecosystems of coastal sand dunes for vegetation survey in Jeju Island are selected based on naturalness and preservation. In this study, 23 major coastal dunes on Jeju Island including Udo were selected. In the coastal dunes of Jeju Island, a whole species survey and quadrat survey were carried out. The vegetation survey at study sites were conducted on May to September 2022, when the vegetation is clearly visible. At the survey site, the dune area was identified at the beginning and the plant species were recorded until no more new species appeared. Vegetation survey in the field was performed by 103 quadrat establishments and was conducted using Braun-Blanquet method. A total of 277 species appeared, and the most common species were Vitex rotundifolia and Calystegia soldanella. The frequency of both Vitex rotundifolia and Calystegia soldanella was approximately over 90%. The proportion of woody and herbaceous in all emerging species was 7.2% and 92.8%, respectively. The total number of species found in the quadrat survey was 98. As a result of classifying plant communities based on species dominance in the quadrats, it was analyzed into 30 plant communities. The plant communities that appeared with a frequency of 2 or more on the main island of Jeju were Vitex rotundifolia, Imperata cylindrica var. koenigii, Ischaemum antephoroides, Wedelia prostrata, Elymus mollis, Calystegia soldanella, Artemisia scoparia, and Tetragonia tetragonoides. The DCCA(detrended canonical correspondence analysis) based on the vegetation and environment factor matrix showed that the height and covers of the dominant plant species explain significantly the variation and distribution of coastal sand dune species on Jeju island. Thus, we may propose a plan to restore the coastal dunes of Jeju island as helping colonization and establishment of mainly sand dune native perennials and trees, preserving native plant communities that are declining and preserving present tree strips of Pinus thunbergii, Litsea japonica, Pittosporum tobira and Vitex rotundifolia.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

A Study on the Characteristics of the Vegetation Structure and Location Environment of the Albizzia kalkora Community (왕자귀나무군락의 식생구조 및 입지환경 특성 연구)

  • Kim, Ji-Suk;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.783-792
    • /
    • 2016
  • The purpose of this study is to investigate the characteristics of the vegetation structure and the location environment of Albizzia kalkora (AK) growing in Mt. Yudal located in Mokpo city and in the nearby islands. The AK community in Mt. Yudal in Mokpo city (Community I) is located in a region which is relatively high above the sea level. The average age of the major kinds of trees found in the region is about 30 years. The vegetation structure in the community shows an early stage of vegetation development due to continued disturbance. In Community IV, on the sandy soil in the flatland near the seashores, the average age of the major kinds of trees is about 9 years. In this community, a pure forest is presumed to have been formed in a poor environment which is artificially disturbed in relatively recent times even as AK with its strong adoptability was introduced into the region. In other communities (II, III), the vegetation state shows a competition between AK and deciduous oak trees, and the average age of the major kinds of trees is about 13 to 30 years. AK communities with a better developed vegetation structure are located on the higher steep slopes near the seashore. In the early stage of vegetation development, the forest floor received more effective light for photosynthesis, and thus more seedlings of AK emerged and grew. The probability of AK appearing in the damaged or sterile soil near the seashore was high because of its strong adaptability. However, as the vegetation structure developed further and the soil fertility increased, the domination of AK in the vegetation structure decreased as deciduous oak trees won the competition with AK.

Interaction between Coastal Debris and Vegetation Zone Line at a Natural Beach (자연 해안표착물과 배후 식생대 전선의 상호 작용에 관한 연구)

  • Yoon, Han Sam;Yoo, Chang Ill
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2014
  • Changes in the interactions among incident ocean water waves, coastal debris (marine debris), and the back vegetation zone line on a natural sandy beach on the island of Jinu-do in the Nakdong river estuary were investigated. The study involved a cross-sectional field survey of the beach, numerical modeling of incident ocean water waves, field observations of the distribution of coastal debris, and vegetation zone line tracking using GPS. The conclusions of this study can be summarized as follows: (1) The ground level of the swash zone (sandy beach) on Jinu-do is rising, and the vegetation zone line, which is the boundary of the coastal sand dunes, shows a tendency to move forward toward the open sea. The vegetation zone line is developing particularly strongly in the offshore direction in areas where the ground level is elevated by more than 1.5 m. (2) The spatial distributions of incident waves differed due to variations in the water depth at the front of the beach, and the wave run-up in the swash zone also displayed complex spatial variations. With a large wave run-up, coastal debris may reach the vegetation zone line, but if the run-up is smaller, coastal debris is more likely to deposit in the form of an independent island on the beach. The deposited coastal debris can then become a factor determining which vegetation zone line advances or retreats. Finally, based on the results of this investigation, a schematic concept of the mechanisms of interaction between the coastal debris and the coastal vegetation zone line due to wave action was derived.

Ecological Characteristics and Management Plan of the Gonyangcheon Estuarine Wetland, Sacheon, South Korea (사천 곤양천하구습지의 생태적 특성과 관리방안)

  • Pyoungbeom Kim;Jeoncheol Lim;Yeonhui Jang;Yeounsu Chu
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.78-89
    • /
    • 2024
  • Estuarine provides unique environmental conditions in terms of salinity concentration and sediment change patterns as freshwater and seawater mix. These conditions allow it to possess biodiversity that cannot be found in other ecosystems. This study was conducted to investigate and analyze distribution characteristics and biota of vegetation in the Gonyangcheon Estuarine Wetland, a brackish area, to prepare basic data for the conservation and sustainable use of estuarine wetlands. The vegetation in the Gonyangcheon Estuarine Wetland was classified into 23 plant communities across a total of six physiognomic vegetation types, including lentic herbaceous vegetation, lotic herbaceous vegetation, salt marsh vegetation, segetal vegetation, and substitutional vegetation. In particular, the Zoysia sinica community was widely distributed in the lower reaches, showing typical characteristics of tidal wetland and increasing its conservation value. From a biodiversity perspective, a total of 1,067 species were identified (an increase of 53 species compared to 2012) and 15 species of endangered wildlife were identified. Gonyangcheon Estuarine Wetland is an open estuary with excellent ecological connectivity. Various topography and landscapes such as rice paddies, forests, and salt marshes were organically developed and distributed, playing a positive role in promoting biodiversity, including brackish water organisms. Therefore, systematic conservation of the Gonyangcheon Estuarine Wetland will contribute to protecting migration routes of organisms and promoting ecological stability by securing a wetland ecological axis connected to the coast.

Comparative Study of Actual Vegetation and Past Substitutional Vegetation to Baekje Historic Site in Seoul - Focusing on Pungnaptoseong(風納土城) and Mongchontoseong(夢村土城) - (서울 백제역사유적지 관리를 위한 현존식생과 과거 대상식생 비교 연구 - 풍납토성(風納土城)과 몽촌토성(夢村土城)을 중심으로 -)

  • Cha, Doo-Won;Oh, Choong-Hyeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.74-80
    • /
    • 2022
  • The vegetation of historical sites has been a form of vegetation that has remained since some years ago, but in modern times, vegetation and terrain have been deformed or damaged due to urban development, which was followed by an industrialization. As a solution to this, it is necessary to establish a plan for restoration and management by referring to the vegetation and landscape remaining in the historic site as indicators. This study was conducted to provide basic data for vegetation and landscape management of Baekje Historic Sites in Seoul by comparing and analyzing location characteristics, existing vegetation, and remaining vegetation of past substitutional vegetation for Pungnaptoseong and Mongchontoseong, Baekje Historic Sites in Seoul. As a result of the study, Pungnaptoseong and Mongchontoseong are located near the main stream of the Han River, Pungnaptoseong is located on a flat land consisting of natural embankments and floodplains, and Mongchontoseong is located on a hilly area. In the case of existing vegetation, it has been confirmed that Pungnaptoseong mainly has ornamental trees planting sites, while Mongchontoseong has a distribution of residual species from the past that grow in villages and hilly lowlands. The Substitutional vegetation of Pungnaptoseong and Mongchontoseong was synthesized based on the location characteristics and actual vegetation, it is estimated that the hilly areas may have been divided into "Quercus aliena Blume.", "Quercus mongolica Fisch. ex Ledeb." and so on, "Pinus densiflora Siebold & Zucc." on dry land,"Salix koreensis Andersson.", "Juglans mandshurica Maxim.", "Alnus japonica (Thunb.) Steud." in rivers and tributaries, "Quercus acutissima Carruth." in the main part of the forest, "Pinus densiflora Siebold & Zucc.", "Salix koreensis Andersson.", "Zelkova serrata (Thunb.) Makino." as a divine tree in the beginning of the village. Since the 1960s, all substitutional vegetation in the past has disappeared due to the introduction of foreign species and the creation of urban areas in Pungnaptoseong and Mongchontoseong, and the landscape has also been damaged. Fortunately, the substitutional vegetation was estimated in consideration of the species of residual trees distributed along the walls, climate, location characteristics, and times, but this study was conducted based on literature and existing vegetation surveys. Therefore, it is necessary to supplement the past target vegetation in Baekje historical sites in Seoul through quantitative experiments such as plant relic analysis in the future.

The Late Quaternary Pollen Analysis of Gokgyo River Basin in Asan-City, Korea - Focused on Vegetation and Climate Environment between the Last Glacial Maximum and the Late Glacial - (충남 아산 곡교천 유역의 제4기 후기 화분분석 - 최종빙기 최성기~만빙기 식생 및 기후환경에 주목하여 -)

  • PARK, Ji-Hoon;KIM, Sung-Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The pollen analysis was performed targeting the valley plain alluvium of Jangjae-ri, Asan area in order to clarify the climate and vegetation environment of the Last glacial maximum and the Late glacial in terms of Gokgyo River Watershed In Asan-City, Korea. The sample collection point gets included in the current deciduous broadleaf forest zone (south cool temperate zone). The results are as follows. (1) The vegetation environment of about 19,300-14,100yrB.P. at the investigation area is mainly classified into YJ-I period and YJ-II period while YJ-Ia period is classified once again into YJ-Ia period and YJ-Ib period. YJ-Ia period (19,300-17,500yrB.P.) is correlated with the Last Glacial Maximum while the vegetation at the time has relatively a little wide distribution area of grassland compared to the forest and the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest. YJ-Ib period (15,400-14,750yrB.P.) is correlated with the Late glacial (or the Last Glacial Maximum) and the distribution area of grassland became wider compared to the forest. While the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest, a difference exists in terms of the dominant tree species. YJ-II period (about 14,650-14,100yrB.P.) is correlated with the Last glacial while the distribution area of grassland became even wider than the forest compared to the YJ-Ib in case of the vegetation at the time and the forest vegetation of this time period is the coniferous forest. (2) Both YJ-I period and YJ-II period were relatively cold and dry compared the End of Late Glacial (about 12,000-10,000yrB.P.)~Early Holocene (10,000-8,500yrB.P.), Also, YJ-II period was relatively colder than the YJ-I period and the YJ-Ib period was relatively more humid than the YJ-Ia period.

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.

Community Distribution on Mountain Forest Vegetation of the Gyebangsan Area in the Odaesan National Park, Korea (오대산 국립공원 계방산 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Yun, Chil-Sun;Lim, Jin-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.135-145
    • /
    • 2014
  • The mountain forest vegetation of Gyebangsan (1,577 m) in Odaesan National Park is classified into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, plantation forest, and other vegetation which includes Actinidia argute community and agricultural land. As for the number of communities distributed in the each forest vegetation which were categorized by the physiognomy classification, deciduous broad-leaved forest had 33 communities, mountain valley forest 41 communities, coniferous forest 8 communities, subalpine coniferous forest 4 communities, subalpine deciduous forest 2 communities, plantation forest 6 communities and other vegetation 4 communities. Regarding the distribution rate of communities in the vegetation, in the deciduous broad-leaved forest. Quercus mongolica community accounted for 80.226% with $30,909,942.967m^2$, followed by Quercus variabilis community of 2.771% with $1,067,479.335m^2$. 55.463% of deciduous broad-leaved forest in the Gyebangsan had Quercus mongolica as a dominant or second dominant species. In the mountain valley forest, Fraxinus rhynchophylla - Juglans mandshurica community accounted for 10.955%. And there were ten mixed communities having Fraxinus rhynchophylla and upper layer at a similar level of coverage, taking up 32.776%. In the coniferous forest, Pinus densiflora and the community living with Pinus densiflora accounted for 100%, showing that the coniferous forest has the community with Pinus densiflora as a dominant species at upper layer. For other vegetation, subalpine coniferous forest had a total of four communities including Abies holophylla - Quercus mongolica community, and accounted for 4.980% of vegetation area of Odaesan National Park. Two communities including Betula ermani - Cornus controversa community were found in the subalpine deciduous forest, taking up 0.006% of total vegetation area of Odaesan National Park. Regarding plantation forest, Larix leptolepis was planted the most with 51.652%, followed by Betula platyphylla var. japonica with 38.975%, and Pinus koraiensis with 7.969%. These three species combined accounted for 98.565%. In conclusion, the forest vegetation found in the Gyebangsan of Odaesan National Park has Quercus mongolica as a dominant species at the top layer. A lot of other communities related with this species are expected to be quickly replaced due to vegetation succession and climatic causes. Therefore, Quercus mongolica is expected to become the main species in the deciduous broad-leaved forest, Fraxinus rhynchophylla, Juglans mandshurica and Fraxinus mandshurica in the mountain valley forest. Around the border line between deciduous broad-leaved forest and mountain valley forest, highly humid valley area is expected to be quickly taken up by Cornus controversa and Fraxinus mandshurica, and the slope area by Quercus mongolica. However, in the subalpine coniferous forest, the distribution rate of deciduous broad-leaved trees is expected to increase due to climate warming.