• Title/Summary/Keyword: Vegetation area

Search Result 2,135, Processing Time 0.061 seconds

Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production (Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구)

  • Han, Hyeon-Gyeong;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.483-489
    • /
    • 2019
  • True color images display colors similar to natural colors. This has the advantage that it is possible to monitor rapidly the complex earth atmosphere phenomenon and the change of the surface type. Currently, various organizations are producing true color images. In Korea, it is necessary to produce true color images by replacing generations with next generation weather satellites. Therefore, in this study, visual enhancement for true color image production was performed using Top of Atmosphere (TOA) data of Advanced Himawari Imager (AHI) sensor mounted on Himawari-8 satellite. In order to improve the visualization, we performed two methods of Nonlinear enhancement and Histogram equalization. As a result, Histogram equalization showed a strong bluish image in the region over $70^{\circ}$ Solar Zenith Angle (SZA) compared to the Nonlinear enhancement and nonlinear enhancement technique showed a reddish vegetation area.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Assessment of the environmental flow and habitat of the river ecosystem through ecosystem function model (생태계 기능모의를 통한 하천의 환경유량 및 서식처 평가)

  • Na, Jong-Moon;Park, Seo-Yeon;Cho, Yean-Hwa;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.191-201
    • /
    • 2021
  • Rivers have been damaged due to rapid urbanization, and river management has been carried out focusing on flow and flood control functions. Recently, interest in river restoration, emphasizing the environmental aspects of rivers, is increasing, but the beginning of river restoration requires an appropriate evaluation of the environmental flow required for the ecosystem. This study analyzed the effects on the habitat of the river ecosystem by estimating the changes in flow regime and environmental flow following the construction of the Buhang dam in Gamcheon, the first tributary of the Nakdong River. To evaluate the environmental flow, the dominant species of Gamcheon, Zacco Platypus, and the protected species Squalidus gracilis majime, and riparian vegetation were selected, and the environmental flow was calculated using the HEC-EFM (Ecosystem Function Model). The evaluated environmental flow was linked with hydraulic analysis and GIS platform, and habitat area change and habitat connectivity analysis before and after dam construction were performed by spatial habitat analysis in the river. Based on the results of this study, it can be used as a river restoration project and a dam operation plan considering the river environment through the calculation of environmental flow and habitat connectivity analysis to improve the habitat of the river ecosystem.

Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

  • Go, Seung-Hwan;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.699-717
    • /
    • 2021
  • South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V)stage and the reproductive (R)stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

Spatial Composition Affecting Bird Collision in Suwon-city, South Korea (수원시의 조류 충돌에 영향을 미치는 공간 구성)

  • Kim, Suryeon;Choi, Jaeyeon;Seo, Jayoo;Kim, Sukyoung;Baek, Jiwon;Song, Wonkyong;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.4
    • /
    • pp.241-249
    • /
    • 2022
  • Humans and wild birds coexist in cities, where habitat fragmentation due to urbanization threatens the habitat and movement of birds. In this study, in order to identify landscape features associated with wild bird collide, we characterized landscape composition within a 500 m radius and points of wild bird carcasses in Suwon-city, South Korea. Dead birds were identified as having a Normalized Difference Vegetation Index (NDVI) of 0.3, Normalized Difference Built-up Index (NDBI) of -0.05, and Normalized Difference Water Index (NDWI) of -0.16 at the points of collide. And there were NDVI of 0.34, NDBI of -0.01, NDWI of -0.18, building height of 13.8 m, and soundproof wall length of 227.3 m within a radius of 500 m. Land cover type was dominated by grassland, used area, and bare land. In particular, the edges of urbanized areas, where apartments bordered forests, reservoirs, and golf courses, were identified as high-risk spaces. In order to minimize bird mortality risk in urban environments, the impact of changes to a vertical landscape should be reviewed from an environmental impact assessment approach. In addition, a preventive management plan that considers the temporal and spatial features that wild animals can safely avoid and adapt to in urbanized spaces should be prepared.

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4 (농림위성 산림분야 식생지수 검보정 사이트 설계)

  • Lim, Joongbin;Cha, Sungeun;Won, Myoungsoo;Kim, Joon;Park, Juhan;Ryu, Youngryel;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.311-326
    • /
    • 2022
  • The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.