Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.
가뭄은 전 세계적으로 농업을 비롯한 사회, 경제적으로 큰 피해를 주는 자연 재해이며, 향후 피해 저감을 위해 가뭄의 경향을 파악하고 지역별 가뭄 특성을 파악할 필요가 있다. 위성영상을 활용한 가뭄 판단은 광역적 범위를 대상으로 다양한 밴드를 활용한 데이터를 주기적이고 일정한 수준으로 취득 가능하다는 장점이 있다. 농업 가뭄 분야의 위성영상 활용은 미계측 지역에 대한 정확한 데이터 취득이 어려운 지점데이터의 단점을 보완할 수 있다. 위성영상을 활용한 가뭄 지수로는 Leaf Area Index (LAI), Vegetation Health Index (VHI), Enhanced Vegetation Index (EVI) 등 다양한 지수들이 있으며, 본 연구에서는 단기 가뭄 판단에 활용되고 있는 Evaporative Stress Index (ESI)를 활용하였다. 국내 행정구역 기반의 가뭄 판단을 위해 Moderate Resolution Imaging Spectramadiometer (MODIS)위성의 MOD16A2 영상을 사용하였다. MOD16A2는 land surface temperature (LST)과 LAI의 계산을 통한 실제 증발산량과 FAO-56 Penman-Monteith 공식을 사용한 잠재증발산량을 포함한 다양한 데이터를 8일 주기의 500m 해상도로 제공하고 있다. 2001년부터 2018년까지 500m 해상도의 ESI를 산정하였으며, 국내의 과거 가뭄 경향 분석과 지역별 특성 파악을 위한 표준화를 수행하였다. 그 결과 과거 극심한 가뭄이 있었던 해 (2000-2001년, 2015-2017년 등)에 대한 농업 가뭄 경향 분석이 가능하였으며, 지역별 특성을 파악한 결과 상습가뭄 지역에서 가뭄 경향을 확인하였다. 농업 가뭄 분야에서 ESI의 활용은 가뭄 조기 경보 시스템 개발 및 위성영상 기반 가뭄 모니터링 기술 개발 등에 활용 가능할 것으로 기대된다.
Plant water deficiency during drought season causes physiological stress and can be a critical indicator of forest fire vulnerability. In this study, we attempt to analyze the spectral characteristics of water stressed vegetation by using the laboratory measurement on leaf samples and the canopy reflectance spectra extracted from satellite hyperspectral image data. Leaf-level reflectance spectra were measured by varying moisture content using a portable spectro-radiometer. Canopy reflectance spectra of sample forest stands of two primary species (pine and oak) located in central part of the Korean peninsula were extracted from EO-l Hyperion imaging spectrometer data obtained during the drought season in 2001 and the normal precipitation year in 2002. The preliminary analysis on the reflectance spectra shows that the spectral characteristics of leaf samples are not compatible with the ones obtained from canopy level. Although moisture content of vegetation can be influential to the radiant flux reflected from leaf-level, it may not be very straightforward to obtain the spectral characteristics that are directly related to the level of canopy moisture content. Canopy spectra form forest stands can be varied by structural variables (such as LAt, percent coverage, and biomass) other than canopy moisture content.
Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
한국작물학회:학술대회논문집
/
한국작물학회 2022년도 추계학술대회
/
pp.88-88
/
2022
Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.
2000년 이후 빈번하게 발생하고 있는 봄 가뭄을 모니터링하기 위한 방법의 하나로 위성영상을 이용하여 제작한 식생지수의 변화를 통해 가뭄을 간접적으로 추정하는 연구가 수행되고 있다. 식생지수 기반의 가뭄 모니터링은 가뭄의 변화를 시 공간적으로 효과적으로 파악할 수 있다는 장점을 갖고 있으며 MODIS 영상과 같이 주기 해상도가 뛰어난 저해상도 위성영상의 활용 기반이 조성됨에 따라 가뭄모니터링을 위한 식생지수의 활용성은 더욱 증가할 것으로 예상된다. 식생지수를 이용한 가뭄평가는 식생 활력에 영향을 주는 요소를 기상학적 요인으로 제한하고 있으나 실제 식생 스트레스를 초래하는 직 간접적인 원인은 매우 다양하며 이로 인해 식생지수를 이용한 가뭄평가는 다수의 불확실성이 내포되어 있다고 할 수 있다. 따라서 식생지수를 이용한 가뭄분석의 객관성을 확보하고 이를 활용한 가뭄모니터링 체계를 구축하기 위해서는 가뭄관리를 위해 활용되고 있는 대표적인 가뭄분석 도구와의 비교가 선행되어야 할 것이다. 본 연구에서는 대표적인 식생지수인 NDVI를 기상학적 가뭄지수인 PDSI, SPI와 비교하고 이들의 상관성을 제시함으로써 가뭄평가를 위한 식생지수의 활용성을 제시하고자 하였다. 연구결과 다중시기를 대상으로 NDVI와 지속기간 6개월의 SPI변화패턴은 유사하게 나타났으며 NDVI는 식생피복을 갖는 내륙지역에서 가뭄지수와 가장 높은 상관성을 갖는 것으로 나타났다.
최근 초분광영상의 활용 연구사례와 다양한 분광지수들의 개발과 평가가 지속적으로 증가하고 있다. 특히 식생원격탐사 분야에서는 식생의 스트레스와 활력에 대한 지표로 식생지수가 사용되며 일반적으로 NIR과 red 파장대의 두 개 혹은 이상의 분광밴드를 선택적으로 사용하고 있다. 항공 초분광영상은 좁고 연속적인 수많은 밴드를 가지기 때문에 식생지수를 위한 밴드선택에 혼돈을 야기할 수 있다. 만약 식생지수를 개발하는 과정에서 사용된 밴드와 항공기를 이용해 취득한 센서의 밴드정보와 동일하지 않다면, 탐지 대상의 광학특성에 대한 설명력이 높은 적절한 밴드를 선택하는 것이 필요하다. 따라서 본 연구에서는 NIR과 red 파장영역에 속하는 4개의 후보밴드를 선택하고 이들의 조합으로 계산된 NDVI(normalized difference vegetation index)와 MSRI(modified simple ratio index)를 산출하였다. 산출된 식생지수들에 대해서 각 지수들의 변이를 살펴보기 위해 변화탐지 기법의 차연산(image differencing)을 이용하였다. 또한 보다 직접적인 분석을 위해서 분광미분(spectral derivative)을 통하여 임상도로 구분되는 식생의 종류별 분광특성을 가장 잘 설명할 수 있는 밴드를 확인하였다. 연구 결과로 후보밴드들 중에서 red #3(680.2nm)와 NIR #2(801.7nm)가 수림에 영향을 적게 받고 밴드의 변동이 적은 적절한 밴드로 선택할 수 있었다.
Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
대한원격탐사학회지
/
제30권3호
/
pp.375-381
/
2014
Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.
Different vegetation indices from satellite images have been used for monitoring drought damages, and this study aimed to develop a drought index using NOAA/AVHRR NDVI(Normalized Difference Vegetation Index) and to analyze the temporal and spatial distribution of spring drought severity in North Korea from 1998 to 2001. A new drought index, DevNDVI(Deviation of NDVI), was defined as the difference between a monthly NDVI and average monthly NDVI at the same cover area, and the DevNDVI images at all years except for 2001 demonstrated the drought-damaged areas referred from various domestic and foreign publications. The vegetation of 2001 showed high vitality despite the least amount of rainfall among the target years, and the reason was investigated that higher temperature above normal average would shift the growing stages of plants ahead. Therefore, complementary methods like plant growth models or ground survey data should be adopted in order to evaluate drought-induced plant stress using satellite-based NDVI and to make up far the distortion induced by other environments than lack of precipitation.
본 연구에서는 수치모의를 통하여 전단면 식생 수로에서 와도의 생성을 분석하였다. 지배방정식에서 난류 폐합을 위해 레이놀즈응력모형을 이용하였다. 거친 하상-매끄러운 측벽 및 매끄러운 하상-거친 측벽을 갖는 개수로 흐름을 수치모의하여 서로 다른 형태의 이차흐름 구조가 형성되는 것을 확인하였다. 즉, 거친 하상 조건에서는 자유수면 이차흐름의 규모가 감소되고, 거친 측벽 조건에서는 자유수면 이차흐름의 구조가 더 커지는 것으로 나타났다. 또한 전단면 식생 수로를 수치모의하여 수심 크기의 바닥 이차흐름이 형성되고, 식생 밀도가 증가함에 따라 자유수면 이차흐름이 점차 사라지는 것을 확인하였다. 또한 이차흐름 생성에 중요한 역할을 하는 난류의 비등방성 및 레이놀즈응력 분포를 식생밀도에 따라 살펴보았다. 한편, 와도 방정식을 분석한 결과, 비식생 수로의 경우 벽 및 수면 경계 근처에서는 난류 비등방성에 의한 생성항이, 경계와 떨어진 곳에서는 레이놀즈응력에 의한 생성항이 와도 생성에 중요한 역할을 하는 것으로 나타났다. 그러나 식생 수로에서는 이러한 특성이 사라지는 것으로 확인되었다. 또한 비식생 수로에서는 바닥과 수면에서의 와도 생성이 강하게 발생되지만, 식생 수로에서는 바닥과 식생 높이에서 와도 생성이 크게 발생되는 것으로 나타났다.
Many applications in the areas of agricultural, hydrological and environmental resource management require data over very large areas and with a high imaging frequency - monitoring crop growth, water stress, seasonal wetland flooding and natural vegetation development. This precludes the use of fine resolution data (Landsat, Spot) on the grounds of cost, accessibility and low imaging frequency. Meteorological satellites have the potential to fill this need, given their very wide spatial coverage, and high repeat imaging. The Remote Sensing Unit (RSU) at the Zambia Meteorological Department routinely receives, processes and archives imagery from both Meteosat and NOAA AVHRR satellites. Here I wish to present some examples of applications of these data sets that arise from the RSU work - relationships between rainfall and vegetation development as assessed by satellite, derived information and seasonal patterns of flooding in the Barotse floodplain and the Kafue flats. I also wish to outline ways in which a more widespread use of this data by the Zambian institutions canbe achieved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.