• Title/Summary/Keyword: Vegetation Map

Search Result 408, Processing Time 0.032 seconds

Distribution of Aquatic Macrophytes in the Lttoral Zone of Lake Platangho, Korea (팔당호 연안대에서 대형수생식물의 분포)

  • Cho, Kang-Hyun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • In the littoral zone of Lake Paltangho, a vegetation map of aquatic macrophytes was constructed to estimate their occupied area, and the change of abundance of submersed macrophytes was examined along water depth to elucidate niche perferences on the depth gradient. Total area of the littoral zone was 267 ha, of which submersed, emergent and floating-leaved macrophytes covered 155ha, 103 ha and 10ha, respectively. Submersed macrophytes were distributed within a water-depth of 2.5m, with an apparent pattern of zonation: Vallisnaria gigantea and Ceratophyllum demersum at the deeper water depth of 1.5~2.5m.

  • PDF

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

The Vegetation of Seoimal-Lighthouse area in koje Island (거제 서이말등대 주변의 식생)

  • 김인택
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.649-653
    • /
    • 2002
  • The vegetation of Seoimal-lighthouse area was investigated from August, 2001 to July, 2002. In order to analyze the vegetation of this area, synthesis table, actual vegetation map were prepared. The main community structures of this area represent evergreen broad-leaf community(about 48%), which are very good condition(nearly last sere) to preserve and 11communities(Camellia japonica community, Castanopsis cuspidnta var. thunbergii community, Neolitsea sericea community, Quercus serrata community, Quercus variabilis community, Carpinus corenna community, Srtrax japonica community, Pinus thunbergii community, Quercus acutissima community, Zelkova serrata community, Cinnamimum japonicum community) were classified by vegetation type. And Daphne kiusiana, Asirum maculatum, Cymbidium goeringii, Chloranthus glaber, Ligularia taguetii should be worthwhile species to conserve in this area.

Monitoring the Ecological Drought Condition of Vegetation during Meteorological Drought Using Remote Sensing Data (원격탐사자료를 활용한 기상학적 가뭄 시 식생의 생태학적 가뭄 상태 모니터링)

  • Won, Jeongeun;Jung, Haeun;Kang, Shinuk;Kim, Sangdan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.887-899
    • /
    • 2022
  • Drought caused by meteorological factors negatively affects vegetation in terrestrial ecosystems. In this study, the state in which meteorological drought affects vegetation was defined as the ecological drought of vegetation, and the ecological drought condition index of vegetation (EDCI-veg) was proposed to quantitatively monitor the degree of impact. EDCI-veg is derived from a copula-based bi-variate joint probability model between vegetation and meteorological drought information, and can be expressed numerically how affected the current vegetation condition was by the drought when the drought occurred. Comparing past meteorological drought events with their corresponding vegetation condition, the proposed index was examined, and it was confirmed that EDCI-veg could properly monitor the ecological drought of vegetation. In addition, it was possible to spatially identify ecological drought conditions by creating a high-resolution drought map using remote sensing data.

Vegetation Height and Age Estimation using Shuttle Radar Topography Mission and National Elevation Datasets (SRTM과 NED를 이용한 식생수고 및 수령 추정)

  • Kim Jin-Woo;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.127-130
    • /
    • 2006
  • SRTM 데이터와 USGS의 NED (National Elevation Datasets) 데이터를 사용하였으며 두 데이터를 차분함으로써 식생수고도(vegetation height map)를 얻었다. 또한 차분값과 shape 파일에 포함된 식수년도의 비교를 통해 상관관계여부를 판단하고자 했다. 회귀분석을 통해 차분데이터와 식수년도 사이의 큰 상관관계가 존재함을 확인할 수 있었으며 결국 수령추정과 수령정보의 맵핑이 가능함을 보였다. 추가적으로 지역별 지형특성, 숲의 균일도 등에 의해 선형성이 영향을 받는지 관찰하였다.

  • PDF

Forest Fire Damage Analysis Using Satellite Images (위성영상을 이용한 산불재해 분석)

  • Kang, Joon-Mook;Zhang, Chuan;Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Forest fire is one of the main factor disturbing the environment of forest, and it influences greatly the structure and function on forest. The process of vegetation recovery could be decided according to the extent of the damage. It is required a lot of man powers and budgets to understand born severity and process of vegetation rehabilitation at the damaged area after large-fire. However, the analysis of born severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. In this study, the space sensors have been used to map area burned, assess characteristics of active fires. For classifying fire damaged area and analyzing severity of Cheongyang-Yesan fire in 2002, in this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ to compute the evaluate large-scale patterns of burn severity, use the digital stock map to calculate the damaged condition about the forest fires damaged regions and use the NDVI to monitoring the situation of the revegetation.

Shallow Landslide Assessment Considering the Influence of Vegetation Cover

  • Viet, Tran The;Lee, Giha;Kim, Minseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% of observed stable cells being well predicted.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.

Actual Vegetation and Vegetation Structure at the Coastal Sand Bars in the Nakdong Estuary, South Korea (낙동강 하구 연안사주섬의 현존식생 및 식생구조 연구)

  • Lee, Youl-Kyong;Ahn, Kyung-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.911-922
    • /
    • 2012
  • This study aim that definite the relationship between coastal environment and different sand bar communities, as well as to analyze their spatial distribution of barrier island in the Nakdong river estuary. Survey method follow by Braun-Blanquet(1965) and there a total of 118 relev$\acute{e}$'s were undertaken. Definition of the relationships between species and environmental variables with Canonical Correlation Analysis(CCoA) and that to applied these relev$\acute{e}$'s with the RIM(Kim and Kim, 2006) program and that to classification used the SYN-TAX 2000 program(Podani 1979). On the basis of about 118 phytosociological releve's, the vegetation of xeric and hydric type was arranged in twelve plant communities: Xeric type-Pinus thunbergii community,Vitex rotundifolia community, Carex pumila community, Imperata cylindrica var. koenigii community, Miscanthus sacchariflorus community and Calystegia soldanella community, Hydric type-Salix dependens-Calamagrostis epigeios community, Calamagrostis epigeios-Phragmites communis community, Phragmites communis-Ischaemum aristatum community, Phragmites communis community, Scirpus planiculmis community and Suaeda glauca-S. japonica community.These plant communities represents sand dune vegetation and salt marsh vegetation. Widely distributing types in the actual vegetation map were sea club-rush community, reed community in salt marsh, and dry grassland. The edge in the coastal sand bars has zonation that almost distribution by the reed community in salt marsh. But outside of it were distributed sea club-rush community. Dry grassland type distributes higher zone of the center in coastal sand bars. Respectively, the coastal sand dune and salt marsh vegetation types were distributed ocean and inland on the frontier of it.

A study on the Effective Use of Environmental Information System - focused on the accuracy of raw data - (환경정보체계의 효과적 이용에 관한 고찰 - 원자료의 정확성을 중심으로 -)

  • Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.27-35
    • /
    • 1998
  • In Korea, the initial installation of GIS requires lots of cost, time, and human efforts. If the accuracy of GIS data does not meet the certain standard for use, the system may not work as expected. So, it needs to be investigated for the accuracy of raw data. However, there is little study for the accuracy of raw data in Korea. Therefore, the purpose of this study is to review the data accuracy of raw data - geologic map, 1:5,000 and 1:25,000 scale topographic map, forest stand map, degree of green naturality(DGN) map, and detailed survey data of DGN map-, which are to be used in Environmental Information System(EIS) in Korea. After this study, some errors in data were surveyed and following conclusions were derived. (1) There is no map data, e. g, wildlife habitat map. (2) Some data are misinterpreted depending on the location in the geologic map. (3) Some data are not updated properly after change of topography in the topographic map or the elevation and location is different depending on the scale.. (4) Some data are not edited properly in the forest stand map, e. g. two attributes in one polygon. (5) DGN classification system does not reflect the characteristic of Korean vegetation community. So, it needs to be refined and restructured.

  • PDF