• Title/Summary/Keyword: Vegetation Index

Search Result 1,140, Processing Time 0.032 seconds

A study on analysis to time series data by using vegetation surface roughness index

  • Konda, Asako;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.706-708
    • /
    • 2003
  • Index for difference of vegetation surface roughness (BSI: Bi-directional reflectance factor structure Index) was proposed in our laboratory (Konda et al., 2000). It is thought that BSI is useful vegetation index for vegetation monitoring. If it can be applied for global covered satellite data, detailed monitoring of global vegetation can be expected. However, in order to apply BSI to global satellite data, there are some problems to be solved. In this study, in order to make global data set of BSI, it arranged about processing of the global satellite data for making BSI data sets.

  • PDF

Multi-temporal analysis of vegetation indices for characterizing vegetation dynamics

  • Javzandulam, Tsend-Ayush;Tateishi, Ryutaro;Kim, Dong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.405-407
    • /
    • 2003
  • An attempt has been in this study to delineate the characteristics of spectral signatures of the vegetation in terms of various VIs, particularly made the Normalized Difference Vegetation Index(NDVI), Modified Soil Adjusted Vegetation Index2(MSAVI2) and Enhanced Vegetation Index(EVI). Multitemporal SPOT-4 VEGETATION data from 1998 to 2002 have been used for the analysis. They have been compared with each other for their similarities and differences. The correlations between the vegetation indices observed at various degree of vegetation coverage during their different stages of growth were examined. All of the VIs have shown qualitative relationships to variations in vegetation. Apparently, the NDVI and MSAVI2 are highly correlated for all of the temporal changes, representing the different stages of phenology.

  • PDF

Weighting Coefficient Estimation of Vegetation Health Index for Ecological Drought Analysis (생태가뭄분석을 위한 식생건강지수의 가중치 매개변수 추정)

  • Won, Jeongeun;Choi, Jeonghyeon;Lee, Okjeong;Seo, Jiyu;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • In this study, after estimating VCI (Vegation Condition Index), TCI (Thermal Condition Index) and VHI (Vegetation Health Index) from the NDVI (Normalized Differentiation Vegetation Index) and LST (Land Surface Temperature) remotely sensed at major sites in Korea during the 2001-1919 period, the correlation between these indices and various drought indices is analyzed for the purpose of assessing the effects of ecological drought. The relative impact of VCI and TCI on vegetation health was found to vary by region. The effects of drought on vegetation in Korea's forest areas could be more clearly identified in TCI than in VCI. It is suggested that the revised VHI, reflecting the relative influence of VCI and TCI, can better explain the effects of drought on vegetation.

Selection of Optimal Vegetation Indices for Predicting Winter Crop Dry Matter Based on Unmanned Aerial Vehicle (무인기 기반 동계 사료작물의 건물수량 예측을 위한 최적 식생지수 선정)

  • Shin, Jae-Young;Lee, Jun-Min;Yang, Seung-Hak;Lim, Kyoung-Jae;Lee, Hyo-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.196-202
    • /
    • 2020
  • Rye, whole-crop barley and Italian Ryegrass are major winter forage species in Korea, and yield monitoring of winter forage species is important to improve forage productivity by precision management of forage. Forage monitoring using Unmanned Aerial Vehicle (UAV) has offered cost effective and real-time applications for site-specific data collection. To monitor forage crop by multispectral camera with UAV, we tested four types of vegetation index (Normalized Difference Vegetation Index; NDVI, Green Normalized Difference Vegetation Index; GNDVI, Normalized Green Red Difference Index; NGRDI and Normalized Difference Red Edge Index; NDREI). Field measurements were conducted on paddy field at Naju City, Jeollanam-do, Korea between February to April 2019. Aerial photos were obtained by an UAV system and NDVI, GNDVI, NGRDI and NDREI were calculated from aerial photos. About rye, whole-crop barley and Italian Ryegrass, regression analysis showed that the correlation coefficients between dry matter and NDVI were 0.91~0.92, GNDVI were 0.92~0.94, NGRDI were 0.71~0.85 and NDREI were 0.84~0.91. Therefore, GNDVI were the best effective vegetation index to predict dry matter of rye, wholecrop barley and Italian Ryegrass by UAV system.

A Study on Vegetation Index for Zoning of Natural Ecosystem on Baekdudaegan (백두대간 자연생태계의 지역구분을 위한 식생지수에 관한 연구)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.223-232
    • /
    • 2002
  • For the zoning of natural ecosystem, Vegetation Index is calculated from the vegetation data surveyed on Baekdudaegan (Pijae-Doraegijae). Five factors -biodiversity, conservation value of the stand, environmental quality, longevity of the stand, site productivity- are considered in the calculation of Vegetation Index. Vegetation Index might be a useful zoning tool for management of Baekdudaegan. For Vegetation Index I, 59 sample plots 52.2% of total 113 sample plots are belong to core area, 34 sample plots 30.l% and 20 sample plots 17.7% are belong to buffer zone and transition area, respectively. For Vegetation Index II, 49 sample plots 43.4% of total 113 sample plots are belong to core area, 38 sample plots 33.6% and 26 sample plots 23.0% are belong to buffer zone and transition area, respectively.

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

The Analysis Method of Landscape Fragmentation using Normalized Difference Vegetation Index (식생지수에 의한 경관파편화의 해석기법)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.16-22
    • /
    • 1999
  • The various spatial structure of biological habitat has tighten relationship with biodiversity. Due to increasing of population, development of agriculture and urban structure, various change of landscape has became these days. These change of landscape has raised the decrease of habitat and landscape fragmentation. This paper summarizes research to analysis vegetation index according to P/A ratio, Shape Index, and Fractal dimension using Landsat Thematic Mapper(TM). The analysis of landscape fragmentation using NDVI(Normalized Difference Vegetation Index) 0.5~1 has the most profitable for detection of vegetation fragmentation. The analysis of vegetation index of Seoul and Kyunggi province has also showed that Fractal dimension has the most fragmentation index. In near future, time series analysis is needed for fragmentation of vegetation on the same area, and for various landuse of fragmentation analysis. These researches were carried out for preservation strategy of vegetation and biodiversity.

  • PDF

Analysis of Changes in Vegetation Index Through Long-term Monitoring of Petroglyphs of Cheonjeon-ri, Ulju (울주 천전리 각석의 장기 모니터링을 통한 식생지수 변화 분석)

  • Ahn, Yu Bin;Yoo, Ji Hyun;Chun, Yu Gun;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.659-669
    • /
    • 2021
  • In this study, vegetation index, the vegetation index calculated based on hyperspectral images was used to monitor Petroglyphs of Cheonjeon-ri, Ulju from 2014 to 2020. To select suitable the vegetation index for monitoring, indoor analysis was performed, and considering the sensitivity to biocontamination, Normalized Difference Vegetation Index (NDVI) and Triangular Vegetation Index (TVI) were selected. As a result of monitoring using the selected vegetation index, NDVI increased from 2014 to 2018 and then decreased in 2020, after preservation treatment. On the other hand, TVI was difficult to confirm the tendency during the monitoring. This difference was due to the variation in spectral reflectance according to the photographing conditions by year. Therefore NDVI is less sensitive to spectral reflectance deviation than TVI, so it can be used for monitoring. In order for TVI to be used, however, in-depth study is needed.

Study on Correlation Between Timber Age, Image Bands and Vegetation Indices for Timber Age Estimation Using Landsat TM Image (Landsat TM 영상을 이용한 교목연령 추정에 영창을 주는 영상 밴드 및 식생지수에 관한 연구)

  • Lee, Jung-Bin;Heo, Joon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.583-590
    • /
    • 2008
  • This study presents a correlation between timber Age, image bands and vegetation indices for timber age estimation. Basically, this study used Landsat TM images of three difference years (1994, 1994, 1998) and difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED). Bands of 4, 5 and 7, Normalized Difference Vegetation Index (NDVI), Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SA VI) were obtained from Landsat TM images. Tasseled cap - greenness and wetness images were also made by Tasseled cap transformation. Finally, analysis of correlation between timber age, difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED), individual TM bands (4, 5, 7), Normalized Difference Vegetation Index (NDVI), Tasseled cap-Greenness, Wetness, Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SAVI) using regression model. In this study about 1,992 datasets were analyzed. The Tasseled cap - Wetness, Infrared Index (II) and Vegetation Condition Index (VCI) showed close correlation for timber age estimation.

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.