• Title/Summary/Keyword: Vegetation Density

Search Result 418, Processing Time 0.029 seconds

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects (산림 사업에 의한 산림 식생 및 토양 탄소 변화)

  • Heon Mo Jeong;Inyoung Jang;Sanghak Han;Soyeon Cho;Chul-Hyun Choi;Yeon Ji Lee;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.330-338
    • /
    • 2023
  • To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

Study of the Derive of Core Habitats for Kirengeshoma koreana Nakai Using HSI and MaxEnt (HSI와 MaxEnt를 통한 나도승마 핵심서식지 발굴 연구)

  • Sun-Ryoung Kim;Rae-Ha Jang;Jae-Hwa Tho;Min-Han Kim;Seung-Woon Choi;Young-Jun Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.450-463
    • /
    • 2023
  • The objective of this study is to derive the core habitat of the Kirengeshoma koreana Nakai utilizing Habitat Suitability Index (HSI) and Maximum Entropy (MaxEnt) models. Expert-based models have been criticized for their subjective criteria, while statistical models face difficulties in on-site validation and integration of expert opinions. To address these limitations, both models were employed, and their outcomes were overlaid to derive the core habitat. Five variables were identified through a comprehensive literature review and spatial analysis based on appearance coordinates. The environmental variables encompass vegetation zone, forest type, crown density, annual precipitation, and effective soil depth. Through surveys involving six experts, importance rankings and SI (Suitability Index) scores were established for each variable, subsequently facilitating the creation of an HSI map. Using the same variables, the MaxEnt model was also executed, resulting in a corresponding map, which was merged to construct the definitive core habitat map. Out of 16 observed locations of K. koreana, 15 were situated within the identified core habitat. Furthermore, an area historically known to host K. koreana but not verified in the present, Mt. Yeongchwi, was found to lack a core habitat. These findings suggest that the developed models exhibit a high degree of accuracy and effectively reflect the current ecological landscape.

Analysis of Land Creep in Ulju, South Korea (울주에서 발생한 땅밀림 특성)

  • Jae Hyeon Park;Sang Hyeon Lee;Han Byeol Kang;Hyun Kim;Eun Seok Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.14-30
    • /
    • 2024
  • This study characterized areas at risk of land creep by focusing on a site that has undergone this phenomenon in Ulju-gun, South Korea. Land creep in the area of interest was catalyzed by road expansion work conducted in 2022. The site was examined on the basis of its geological features, topography, effective soil depth, soil hardness, electrical resistivity, and subsurface profile. It consists of a slope covered with sparse vegetation and a concave top that retains rainwater during rainfall. Compositionally, land creep affected the shale, sandstone, and conglomerate formations on the site, which had little silt and more sand and clay compared with areas that were unaffected by land creep. An electrical resistivity survey enabled us to detect a groundwater zone at the site, which explains the softness of the soil. Finally, the effective soil depth at the land creep-affected area was 30.4 cm on average, indicating deep colluvial deposits. In contrast, unaffected sites had an effective soil depth of 24.7 cm on average. These results should facilitate the creation of systems for monitoring and preemptively responding to land creep, significantly mitigating the socioeconomic losses associated with this phenomenon.

Community Structure and Distribution of Natural Seaweed Beds on the Eastern Coast of Korea (동해안 천연 해조장의 군집구조와 분포 특성)

  • Park, Gyu Jin;Ju, Hyun;Choi, Ok In;Choi, Chang Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2017
  • Natural seaweed beds and habitat environments were investigated using quantitative and qualitative methods from May to December 2015 at 3 sites in Gangneung, Uljin, and Busan along the eastern coast of Korea. In total, 9 green, 23 brown, and 64 red algal taxa were identified. The biomass of the seaweed at Gangneung was 173.2 to $613.8wet\;wt.g/m^2$ of Dictyota divaricata, 360.8 to $520.4wet\;wt.g/m^2$ of Symphyocladia linearis, and 25.9 to $470.8wet\;wt.g/m^2$ of Undaria pinnatifida. At Uljin, these numbers were 5.5 to $256.2wet\;wt.g/m^2$ of Plocamium telfarirae and 46.8 to $241.5wet\;wt.g/m^2$ of Agarum clathratum. The biomass of Sargassum coreanum and Ecklonia cava were 388.1 to $6,972.4wet\;wt.g/m^2$ and 194.9 to $958.5wet\;wt.g/m^2$, respectively, at Busan. S. coreanum and E. cava showed higher biomass compared to other seaweed at Busan. The biomass rate represented an average of 19.2 percent of the total population, ranging from 0.0 to 55.5 percent in Gangneung. In Uljin, the average was calculated as 63.8 percent, and this figure was 48.5 percent in Busan. The percentage of barren ground averaged 46.7 percent in Gangneung and 91.1 percent in Uljin. Uljin showed the highest percentage of barren ground compared to other regions. Sea urchin density appeared to be $6.0ind./m^2$ in Gangneung, $7.0ind./m^2$ in Uljin, and $2.0ind./m^2$ in Busan, with the lowest sea urchin density being that of Busan. In conclusion, the composition of species, appearance ratio, and abundance of vegetation found were similar to previous studies, but it is thought that continuous monitoring is needed due to concerns about physical and chemical pollution caused by global warming, climate change, and coastal development.

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

Population Structure and Habitat Characteristics of Deutzia paniculata Nakai, as an Endemic Plant Species in Korea (한반도 특산식물 꼬리말발도리 개체군 구조 및 서식지 특성)

  • Jung, Ji-young;Pi, Jung-hun;Park, Jeong-geun;Jeong, Mi-jin;Kim, Eun-hye;Seo, Gang-Uk;Lee, Cheul-ho;Son, Sung-won
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • Deutzia paniculata is an endemic species to the Korean Peninsula. Despite of importance for conservation, the population structure and habitat characteristics of D. paniculata have not been determined yet. We analyzed the ecological characteristics of the species based on the literature review and field survey. Field survey was conducted on May to October 2014 during which 11 quadrats of size $15{\times}15m$ were studied in six regions. Each of the quadrats were further divided into $5{\times}5m$ small quadrats and population characteristics were recorded. The population and habitat characteristics were analyzed, including species abundance (density and coverage), demographic attributes (flowering rates and fruiting plants), vegetation (structure, species composition), light availability (transmitted light and canopy openness) and soil characteristics (temperature and humidity). We found that D. paniculata mainly distributed in Gyeongsangdo (including Taebaek in Gangwondo) along a broad elevational range of 290~959 m (mean: 493 m) above sea level. In preferred habitat the species grows within the slope range of $7^{\circ}$ and $35^{\circ}$ with the average of $16^{\circ}$. D. paniculata was generally distributed on talus deposits and low adjacent slopes. The average number of individual plants per small quadrat was 12.5 with the mean density $0.5stems\;m^{-2}$. The vegetative reproduction was frequent in D. paniculata and mean flowering rate was as low as 15%. Altogether 138 taxa were found in whole observation area with the dominant tree species mainly spring ephemerals, such as Cornus controversa (importance value: 25.5%) and Fraxinus rhynchophylla (importance value: 15.8%). Although, C. controversa usually grows on steep slopes and F. rhynchophylla mostly distributed at high-altitudes, however, both species distributed in disturbed environments and among talus deposits. Thus based on our results, we concluded that D. paniculata is a disturbance-prone species, primarily existing in habitats subjected to natural disturbances, such as floods. The species occurs less at anthropogenically disturbed sites, thus there is no apparent threat to the populations and habitat of D. paniculata.

Effects of Forest Road Construction on Stream Water Qualities(I) - The Variation of Suspended Sediment by Forest Road Construction - (임도개설(林道開設)이 계류수질(溪流水質)에 미치는 영향(影響)(I) - 임도개설(林道開設)에 따른 부유토사량(浮遊土砂量)의 변화(變化) -)

  • Chun, Kun-Woo;Kim, Min-Sik;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.280-287
    • /
    • 1996
  • This study was carried out to investigate the export rate of suspended sediment by different precipitation intensity after forest road construction for torrential streams on three different watersheds with various forest road density(Watershed A : 6.67m/ha, Watershed B : 5.52m/ha, and Watershed C : control) in the Experimental Forest of Kangwon National University. The results were as follows. 1. Closely related to the the amount of rainfall in both 1994 and 1995, the average streanfkiw rate was less than $0.25{\times}10^4m^3/day$ during May and June and $5.0{\times}10^4m^3/day$ during July and August. More than $25{\times}10^4m^3/day$ of streanflow rate was occurred twice in 1994 and seven times in 1995. 2. The amount of suspended sediment in three watersheds was less than standard of drinking water(25mg/l) before road construction with daily rainfall of 74mm, 92mm, and 120mm in 1994, also after road construction with daily rainfall of 21mm and 47mm in 1995. But, under the 192mm of daily rainfall, Watershed C did not show the difference in the amount of suspended sediment, however, Watershed A and B produced 1,525mg/l and 775mg/l, respectively, which is 61 and 31 fold of stabdard of drinking water, and construction to export for 35 hours after rainfall. 3. The maximum amount of suspended sediment was less than the standard of drinking water with light rainfall before and after road construction. Under the 192mm of daily rainfall, the maximum amounts of suspended sediment in Watershed A and B were 13,150mg/l and 2,690mg/l, of 526 and 108 fold of standard of drinking water, respectively, showing obvious water pollution by sedimentation. Results of the study indicated that the forest road construction had great influence on the sedimentation, and getting increased by higher road density and heavier rainfall. Therefore such practices as vegetation covering and soil erosion control facility should be established accompanying with forest road construction to prevent from sedimentation.

  • PDF

The Analysis of Productivity of Oak Stand following to Site Quality and Crown Class (I) (입지(立地)와 수형급(樹型級)에 따른 참나무임분(林分)의 생산력(生産力) 분석(分析) (I))

  • Kim, Chi Moon;Kwon, Ki Won;Song, Ho Kyong;Moon, Heung Kyu;Park, Hong Joon
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.9-21
    • /
    • 1983
  • The structures of oak stands were studied in relation to their productivity. Three plots classified by the site quality following to altitude, were selected on the oak stand located at Naryongri Eunsanmyun Buyeogun. The site qualities of the stand studied were generally estimated to be moderate in respect to some soil physical and chemical properties. Quercus variabilis was dominant species in the vegetation composition of the stand studied. The crown densities of the stand were varied from 65.4% in plot I to 78.2% in plot III and the parts, occupied with oak trees, ranged from 44.4% in plot I to 65.9% in plot III in the density. In the contrast to crown density, the growing stocks of oak trees ranged from $3.937m^3$ in plot I (73.4% of plot total) to $2.075m^3$ in plot III (84.3% of plot total). The occupied ratios, measured by crown class, exhibited dissimilarity between crown projection area and volume, and also the ratios brought into different patterns by plot. Highly significant correlations were proved between crown projection areas and volumes of individual oak trees by plot, but not proved in the relations by crown class. The cumulative growth, current annual increment and mean annual increment displayed various patterns by plot and by crown class in the heights, D. B. H. s and volumes of oak trees. The maximum values of current annual increment of height were generally recorded in 10 to 20 years, earlier than those of D. B. H. The mean annual increment of height, D. B. H. and volume maintained similar levels after about 10 years and fluctuated irregularly. The crown projection area and volume following to thinning decreased in the order of the thinning methods of grade A < grade B < crown thinning$90m^3/ha$ in about 40 years in the productivity of volume of the oak stand studied.

  • PDF

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Yield of the Black Rice Cultivar 'Shinnongheugchal' (재식밀도 및 시비량 차이가 신농흑찰 품질 및 수량에 미치는 영향)

  • Lee, In-Sok;Lee, Deok-Ryeol;Cho, Seung-Hyun;Lee, Song-Yi;Kim, Kab-Cheol;Lee, Ki-Kwon;Song, Young-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The late-maturing black rice cultivar Shinnongheugchal from Jeollabuk-do Agricultural Research and Extension Service was used as the plant material for estimating growth characters, quality and yield from the vegetation period to harvest age. This study was performed to select an optimum combination of nitrogen level and planting density for the maximum yield of Shinnongheugchal. The plant height, number of tillers, and SPAD index were higher when the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level was used at 30 days after transplanting. The heading date for the combination of 70 hills per $3.3m^2$ and 15 kg/10 a nitrogen level, and 80 hills per $3.3m^2$ and 15 kg/10 a nitrogen level was August 22. The heading date for the other combinations was August 21. The combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level yielded the highest number of tillers at 40 days after flowering. Even though the lodging index was increased with increasing nitrogen levels, field lodging did not occur until harvest time. Seed nitrogen concentration in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level showed a significant difference when compared with the other combinations. The black rice yield varied significantly, and the highest yield was observed in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. The yield was significantly correlated with seed nitrogen concentration. The maximum yield was estimated to be 14.67 kg/10 a nitrogen level by using the regression equation. On average, the coloring degree of the black rice was higher at planting density of 70 hills per $3.3m^2$ than at 80 hills per $3.3m^2$. The highest yield of perfect black rice was obtained using the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. Our findings demonstrate that a nitrogen level of 13-14 kg/10 a can be used to obtain the maximum yield from Shinnongheugchal with yield, cyanidin 3-glucoside content, and perfect black rice yield as the standard.

Vegetation Structure and Growth Environmet of Diabelia spathulata (Siebold & Zucc.) Landrein Population in Mt. Cheonseong, Korea (천성산 주걱댕강나무 개체군의 식생구조와 생육환경)

  • Yi, Myung Hoon;Yoo, Sung Tae;Jang, Jeong Gul
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.346-361
    • /
    • 2021
  • The range of D. spathulata identified in this survey was between N 35° 24' 58" ~ N 35° 26' 35", E 129° 05' 43" ~ E 129° 07' 04". It is located at an altitude of 98~592 m. The soil pH was strongly acidic in the range of 4.2~4.9, with a canopy openness of 18.56% and a chlorophyll index of 36.74 ± 2.80. As a result of the TWINSPAN analysis, 20 plots of 100 m2 each were divided in 4 communities: Pinus densiflora community, Quercus monglica-Diabelia spathulata community, Quercus serrata-Diabelia spathulata community and Carpinus tschonoskii subassociation. The result of species diversity was 0.7615, and evenness and dominance were found to be 0.6077 and 0.3923, respectively. The height of D. spathulata is up to 3.4 m, and the average height is 1.1 m, with most of the species distributed as shrubbery and herbaceous. The average population density of the 20 plots was 1.635 individuals/m2, the height range of flowering was 1.0 ~ 1.8 (aver. 1.39 m) and the rate of flowering was 27.37%. It's propagation pattern was mainly formed by extending the rhizome to the side, creating a colony of ground stems.