• 제목/요약/키워드: Vegetation Cover Fraction

검색결과 21건 처리시간 0.022초

Landsat 8 OLI영상의 NDVI를 이용한 식생피복지수 분석 (Analysis of Vegetation Cover Fraction on Landsat OLI using NDVI)

  • 최석근;이승기
    • 한국측량학회지
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2014
  • 대기의 에너지를 측정하거나 지표면유출을 예측하는 기상 및 수문모델에서 지표면특성(식생피복)을 파악하는 것은 매우 중요한 요소이다. 1978년 Deardorff가 식생피복을 정량적으로 파악하기 위하여 식생피복지수(Vegetation Cover Fraction)를 제안한 후 식생피복지수에 관한 연구가 활발해졌다. 그러나 선행연구에서는 AVHRR, MODIS 그리고 KOMPSAT-2영상과 같은 고 저해상도 위성영상을 이용한 많은 연구가 있었으나, 중해상도 영상인 Landsat에 대한 연구는 미비한 실정이다. 따라서 본 연구는 Landsat OLI영상을 이용하여 식생피복지수 산정방법을 연구하였다. 정확하고 효율적인 식생피복지수 산정방법을 연구하기 위하여, 본 연구에서 제안된 방법과 선행연구방법을 비교평가 하였다. 실험결과 NDVI와 식생피복지수는 많은 연관성을 지니는 것으로 분석되었으며, 본 연구에서 제안된 방법을 이용한 식생피복지수가 특이점을 제외한 RMSE 7.3%로 전체 방법 중에서 가장 높은 정확도를 보였다.

SPOT/VEGETATION 자료를 이용한 한반도의 광합성유효복사율(FPAR)의 산출 (Retrieval of the Fraction of Photosynthetically Active Radiation (FPAR) using SPOT/VEGETATION over Korea)

  • 피경진;한경수
    • 대한원격탐사학회지
    • /
    • 제26권5호
    • /
    • pp.537-547
    • /
    • 2010
  • FPAR는 다양한 육상 생태계 모텔에서 중요한 입력변수로 사용된다. 이 때문에 다양한 global product의 형태로 제공되고 있다. 하지만 한반도를 영역으로 하는 연구에 이를 바로 적용 시 오차가 발생할 수 있고, 이것은 위성자료를 이용한 지면 정보 산출에 있어서 직접적인 오차요인이 된다. 따라서 본 연구에서는 Terra/MODIS와 SPOT/VEGETATION 그리고 ECOCLIMAP 자료를 이용해 한반도에 최적화된 FPAR를 산출 하였고, 또한 기존에 사용하였던 LAI와의 관계식을 사용하지 않고, SPOT/VGT NDVI 로부터 계산된 FVC (Fraction Vegetation Cover)를 직접 이용하여 FPAR를 산출 하였다. 이를 위해 식생지수의 선형/비선형 관계를 이용하여 구하는 경험적인 방법을 적용하여 회귀분석을 수행한 결과 cropland와 forest에서 각각 결정계수 (Coefficient of Determination, $R^2$)가 0.9039. 0.7901으로 정확도가 높은 관계식을 도출해내었다. 최종적으로 Reference FPAR 자료와의 비교 분석을 통해 본 연구에서 산출된 FPAR가 전반적인 패턴을 잘 표현하면서 불규칙하게 발생하던 노이즈 또한 보정된 것을 확인 할 수 있었다. 이렇게 한반도에 최적화된 입력변수의 사용은 산출물의 정확도뿐만 아니라 연구의 질 향상에도 도움을 줄 것으로 사료된다.

원격탐사 자료를 이용한 하와이 해안지역 식생 분류 (Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data)

  • 박선엽
    • 한국지역지리학회지
    • /
    • 제12권4호
    • /
    • pp.496-507
    • /
    • 2006
  • 본 연구는 고해상도 자료와 하이퍼스펙트럴 자료를 혼용하여 하와이 화산 국립공원 내 해안 지역의 식생을 분류하고자 하였다. 연구지역에 주로 나타나는 식생은 3종의 초본(broomsedge, natal redtop, and pili)과 작은 관목 등으로 대표되는 비초본으로 구분된다. 분류 기법으로는 unsupervised classification과 supervised classification을 결합한 하이브리드법을 이용하여 전체적으로 3단계 분류과정을 적용하였다. 첫째로는, IKONOS 고해상 위성자료를 이용하여, 식생 및 비식생지역을 unsupervised classification법을 통해 분류하였다. 두 번째로는, minimum noise fraction(MNF) transformation을 이용하여 AVIRIS하이퍼스펙트럴 자료로부터 주성분을 추출하여 자료를 압축하는 과정을 거쳤다. 20미터 해상도를 가진 AVIRIS 픽셀들은 대부분 용암면과 식생면으로부터 반사된 복사신호가 혼합되어 있기때문에, 용암과 식생의 지표피복 비율에 따른 선형모형을 적용하여 용암면이 갖는 반사 신호를 각 픽셀로부터 제거하였다. 최종적으로, 각 픽셀에 대하여, 식생피복 비율에 비례하는 AVIRIS 하이퍼스펙트럴 자료의 식생성분을 토대로 maximum likelihood algorithm에 따라 supervised classification법을 적용하여 초지 및 관목으로 대표되는 지표식생을 분류하였다.

  • PDF

MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축 (Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data)

  • 정승규;박종화;김상욱
    • 대한원격탐사학회지
    • /
    • 제22권6호
    • /
    • pp.553-563
    • /
    • 2006
  • 본 연구의 목적은 MODIS 다중시기영상과 선형분광혼합화소분석(Linear Spectral Mixture Analysis : LSMA)을 이용하여 한반도의 토지피복도를 작성하는 것이다. 다양한 공간해상도와 광역적인 촬영스케일의 MODIS 영상에 LSMA를 이용하여 토지피복분류기 정확도의 향상과 한반도 생물계절적인 특성을 분석하고자 하였다. LSMA는 하나의 화소를 단일의 지표물로 가정하여 영상을 처리하는 기존의 기법과 달리 대상지의 토지피복 특성을 가장 잘 반영하는 순수한 물체의 화소값(Endmember)을 선택하여 자연환경요소들의 하나하나를 분리하는 기법이다. 본 연구에서 MODIS 다중시기 영상에 LSMA를 적용한 결과 남, 북한의 농경지 및 산림지역에 대한 서로 다른 생물계절적인 특성을 파악 할 수 있었으며, 이러한 결과 영상을 ISODATA 무감독분류기법을 통해서 대분류와 중분류하였다. 대분류에서는 79.94%의 전체 정확도를 보였으며, 농업지역은 85.45%, 산림지역은 88.12%로 다른 분류군들에 비해서 가장 높은 정확도를 보였다. 중분류에서는 산림지역과, 농업지역을 더욱 세분화하여 분류하였다. 전체정확도는 82.09%였으며, 활엽수림 86.96%, 논 85.38%로 분류군중 가장 높은 정확도를 나타냈다.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

Use of Unmanned Aerial Vehicle for Multi-temporal Monitoring of Soybean Vegetation Fraction

  • Yun, Hee Sup;Park, Soo Hyun;Kim, Hak-Jin;Lee, Wonsuk Daniel;Lee, Kyung Do;Hong, Suk Young;Jung, Gun Ho
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.126-137
    • /
    • 2016
  • Purpose: The overall objective of this study was to evaluate the vegetation fraction of soybeans, grown under different cropping conditions using an unmanned aerial vehicle (UAV) equipped with a red, green, and blue (RGB) camera. Methods: Test plots were prepared based on different cropping treatments, i.e., soybean single-cropping, with and without herbicide application and soybean and barley-cover cropping, with and without herbicide application. The UAV flights were manually controlled using a remote flight controller on the ground, with 2.4 GHz radio frequency communication. For image pre-processing, the acquired images were pre-treated and georeferenced using a fisheye distortion removal function, and ground control points were collected using Google Maps. Tarpaulin panels of different colors were used to calibrate the multi-temporal images by converting the RGB digital number values into the RGB reflectance spectrum, utilizing a linear regression method. Excess Green (ExG) vegetation indices for each of the test plots were compared with the M-statistic method in order to quantitatively evaluate the greenness of soybean fields under different cropping systems. Results: The reflectance calibration methods used in the study showed high coefficients of determination, ranging from 0.8 to 0.9, indicating the feasibility of a linear regression fitting method for monitoring multi-temporal RGB images of soybean fields. As expected, the ExG vegetation indices changed according to different soybean growth stages, showing clear differences among the test plots with different cropping treatments in the early season of < 60 days after sowing (DAS). With the M-statistic method, the test plots under different treatments could be discriminated in the early seasons of <41 DAS, showing a value of M > 1. Conclusion: Therefore, multi-temporal images obtained with an UAV and a RGB camera could be applied for quantifying overall vegetation fractions and crop growth status, and this information could contribute to determine proper treatments for the vegetation fraction.

Developing a soil water index-based Priestley-Taylor algorithm for estimating evapotranspiration over East Asia and Australia

  • Hao, Yuefeng;Baik, Jongjin;Choi, Minha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.153-153
    • /
    • 2019
  • Evapotranspiration (ET) is an important component of hydrological processes. Accurate estimates of ET variation are of vital importance for natural hazard adaptation and water resource management. This study first developed a soil water index (SWI)-based Priestley-Taylor algorithm (SWI-PT) based on the enhanced vegetation index (EVI), SWI, net radiation, and temperature. The algorithm was then compared with a modified satellite-based Priestley-Taylor ET model (MS-PT). After examining the performance of the two models at 10 flux tower sites in different land cover types over East Asia and Australia, the daily estimates from the SWI-PT model were closer to observations than those of the MS-PT model in each land cover type. The average correlation coefficient of the SWI-PT model was 0.81, compared with 0.66 in the original MS-PT model. The average value of the root mean square error decreased from $36.46W/m^2$ to $23.37W/m^2$ in the SWI-PT model, which used different variables of soil moisture and vegetation indices to capture soil evaporation and vegetative transpiration, respectively. By using the EVI and SWI, uncertainties involved in optimizing vegetation and water constraints were reduced. The estimated ET from the MS-PT model was most sensitive (to the normalized difference vegetation index (NDVI) in forests) to net radiation ($R_n$) in grassland and cropland. The estimated ET from the SWI-PT model was most sensitive to $R_n$, followed by SWI, air temperature ($T_a$), and the EVI in each land cover type. Overall, the results showed that the MS-PT model estimates of ET in forest and cropland were weak. By replacing the fraction of soil moisture ($f_{sm}$) with the SWI and the NDVI with the EVI, the newly developed SWI-PT model captured soil evaporation and vegetation transpiration more accurately than the MS-PT model.

  • PDF

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - (Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area -)

  • 이한경;이채연;김규랑;조창범
    • 대기
    • /
    • 제29권2호
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Mapping Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images: Application to the Republic of Korea

  • Kim, Daeseong;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.625-638
    • /
    • 2018
  • In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.