Browse > Article
http://dx.doi.org/10.7780/kjrs.2010.26.5.537

Retrieval of the Fraction of Photosynthetically Active Radiation (FPAR) using SPOT/VEGETATION over Korea  

Pi, Kyoung-Jin (Dept. of Geoinformatic Engineering, Pukyong National University)
Han, Kyung-Soo (Dept. of Geoinformatic Engineering, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.26, no.5, 2010 , pp. 537-547 More about this Journal
Abstract
The importance of vegetation in studies of global climate and biogeochemical cycles is well recognized. Especially. the FPAR (fraction of photosynthetically active radiation) is one of the important parameters in ecosystem productivity and carbon budget models. Therefore, accurate estimates of vegetation parameters are increasingly important in environmental impact assessment studies. In this study, optical FPAR using the Terra MODIS (MODerate resolution Imaging Spectroradiometer), SPOT VEGETATION and ECOCLIMAP data reproduced on the Korean peninsula. We applied the empirical method which is usually estimated as a linear or nonlinear function of vegetation indices. As results, we estimated the accurate expression which is 0.9039 of $R^2$ in cropland and 0.7901 of $R^2$ in forest. Finally, this study could be demonstrated to calibrate that produced FPAR while the overall pattern and random noise through the comparative analysis of FPAR on the reference data. Optimal use of input parameter on the Korean peninsula should be helping the accuracy of output as well as the improved quality of research.
Keywords
FPAR (Fraction of photosynthetically active radiation); FVC (Fraction Vegetation Cover); SPOT VEGETATION; MODIS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sellers, P. J. and D. S. Schmid, 1993. Remote Sensing of the land biosphere and biogeochemistry in the EOS era: Science priorities-EOS land biosphere and biogeochemical cycles panels, Global Planetary Change, 7(4): 279-297.   DOI   ScienceOn
2 Xiao, X., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Zhang, and B. Moore, 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest, Remote Sensing of Environment, 89(4): 519-534.   DOI   ScienceOn
3 Tian, Y., Y. Zhang, R. B. Myneni, J. M. Glassy, G. Dedieu, and S. W. Running, 2000. Prototyping of MODIS LAI and FPAR Algorithm with LASUR and LANDSAT data, IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2387-2401.   DOI   ScienceOn
4 Running, S. W., P. E. Thornton, R. Nemani, and J. M. Glassy, 2000. Global terrestrial gross and net primary productivity from the Earth Observing System, Methode in ecosystem science, New York, Springer, 44-57.
5 Pontailler, J. Y., G. J. Hymus, and B. G. Drake, 2003. Estimation of leaf area index using groundbased remote sensed NDVI measurements: validation and comparison with two indirect techniques, Canadian Journal of Remote Sensing, 29(3): 381-387.   DOI
6 Prince, S. D. and S. N. Groward, 1995. Global primary production: A remote sensing approach, Journal of Biogeography, 22: 815-835.   DOI   ScienceOn
7 Roujean, J. L. and R. Lacaze, 2002. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation, Journal of Geophysical Research, 107(D12): 4150-4163.   DOI
8 Ruimy, A., B. Saugier, and G. Dedieu, 1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data, Journal of Geophysical Research, 99(D3): 5263-5283.   DOI
9 Ruimy, A., L. Kergoat, and A. Bondeau, 1999. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency, Global Change Biology, 5(S1): 56-64.   DOI   ScienceOn
10 Gutman, G. and A. Ignatov, 1998. The derivation of the green vegetation fraction from NOAA/ AVHRR data for use in numeric weather prediction models, International Journal of Remote Sensing, 19(8): 1533-1543.   DOI   ScienceOn
11 Knyazikhin, Y., W. Yang, H. Dong, T. Bin, N. Shabanov, and R. Myneni, 2003. MODIS LAI and FPAR product on global, regional and local scales, American Geophysical Union Fall Meeting 2003, #B22C-06.
12 Hall, F. G., J. R. Townshend, and E. T. Engman, 1995. Status of remote-sensing algorithms for estimation of land-surface state parameters, Remote Sensing of Environment, 51(1): 135-156.
13 Jarvis, P. G. and J. W. Leverenz, 1983. Productivity of temperate, deciduous and evergreen forests, Physiological Plant Ecology IV, Ecosystems Processes: Moneral Cycling, Productivity and Man's Influence, Berlin, Springer-Verlag, Vol. 12D, 233-280.
14 Knyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running, 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, Journal of Geophysical Research, 103(D24): 32257-32276.   DOI
15 Myneni, R. B., S. Hoffman, Y. Knyazikhin, J. L. Privette, J. Glassy, and Y. Tian, et al., 2002. Global products of vegetation leaf area and fraction absorbed par from year one of MODIS data, Remote Sensing of Environment, 83(1-2): 214-231.   DOI   ScienceOn
16 Myneni, R., Y. Knyazikhin, J. Glassy, P. Votava, and N. Shabanov, 2003. User's guide FPAR, LAI (ESDT: MOD15A2) 8-day composite NASA MODIS land algorithm, http://www.cybele.bu.edu/modismisr/products/modis/userguide.pdf.
17 강신규, 김영일, 김영진, 2005. MODIS 총일차생산성산출물의 오차요인 분석: 입력기상자료의 영향, 한국농림기상학회지, 7(2): 171-183.   과학기술학회마을