• Title/Summary/Keyword: Vegetated stream

Search Result 27, Processing Time 0.026 seconds

Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin (한강수계 비점오염원 저감시설의 생애주기비용 평가)

  • Lee, Soyoung;Maniquiz-Redillas, Marla C.;Lee, Jeong Yong;Mun, Hyunsaing;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.448-455
    • /
    • 2016
  • Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass loading, removal efficiency, maintenance activities, etc. were gathered and utilized to conduct the evaluation of long-term performance of BMPs. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the lifecycle cost (LCC) of BMPs. In this study, most of the maintenance activity was focused in the aesthetic maintenance that resulted to the annual maintenance cost of the four BMP types was closely similar ranging from 8,483 $/yr for retention pond to 8,888 $/yr infiltration system. The highest LCC were observed in constructed wetland ($418,324) while vegetated system had the lowest LCC ($210,418). LCC of BMPs was not so high as compared with the conventional treatment facility and sewage treatment plant. On the other hand, the relationship of removal efficiency on unit cost for TSS and TN was significant. This study will be used to design the cost effective BMP for diffuse pollution management and become models for LCC analysis.

A Study on Land Acquisition Priority for Establishing Riparian Buffer Zones in Korea (수변녹지 조성을 위한 토지매수 우선순위 산정 방안 연구)

  • Hong, Jin-Pyo;Lee, Jae-Won;Choi, Ok-Hyun;Son, Ju-Dong;Cho, Dong-Gil;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.29-41
    • /
    • 2014
  • The Korean government has purchased land properties alongside any significant water bodies before setting up the buffers to secure water qualities. Since the annual budgets are limited, however, there has always been the issue of which land parcels ought to be given the priority. Therefore, this study aims to develop efficient mechanism for land acquisition priorities in stream corridors that would ultimately be vegetated for riparian buffer zones. The criteria of land acquisition priority were driven through literary review along with experts' advice. The relative weights of their value and priorities for each criterion were computed using the Analytical Hierarchy Process(AHP) method. Major findings of the study are as follows: 1. The decision-making structural model for land acquisition priority focuses mainly on the reduction of non-point source pollutants(NSPs). This fact is highly associated with natural and physical conditions and land use types of surrounding areas. The criteria were classified into two categories-NSPs runoff areas and potential NSPs runoff areas. 2. Land acquisition priority weights derived for NSPs runoff areas and potential NSPs runoff areas were 0.862 and 0.138, respectively. This implicates that much higher priority should be given to the land parcels with NSPs runoff areas. 3. Weights and priorities of sub-criteria suggested from this study include: proximity to the streams(0.460), land cover(0.189), soil permeability(0.117), topographical slope(0.096), proximity to the roads(0.058), land-use types(0.036), visibility to the streams(0.032), and the land price(0.012). This order of importance suggests, as one can expect, that it is better to purchase land parcels that are adjacent to the streams. 4. A standard scoring system including the criteria and weights for land acquisition priority was developed which would likely to allow expedited decision making and easy quantification for priority evaluation due to the utilization of measurable spatial data. Further studies focusing on both point and non-point pollutants and GIS-based spatial analysis and mapping of land acquisition priority are needed.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

Population Size Estimation of the Kaloula borealis in the Daemyung Retarding Basin (대명유수지에 서식하는 맹꽁이 Kaloula borealis 개체군 크기 추정)

  • Choi, Seo-Young;Rho, Paikho
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.684-693
    • /
    • 2016
  • Daemyung retarding basin located near the confluence floodplain of the Nakdong and Kumho River is a large spawning site for the endangered Kaloula borealis, and needs for protecting the habitat of the endangered species are increasing. However, scientific studies are rarely conducted on the population characteristics and ecological knowledge on the species in the basin. This paper aims to estimate the population size and spatial distribution of the species that inhabited at the Daemyung retarding basin, using the capture-recapture method. Also, pitfall traps were installed in each habitat types classified with micro-topographic features, slope aspects, and vegetation communities to identify the spatial distribution characteristics of the Kaloula borealis of each habitat in the retarding basin. Field survey on the species was conducted from May 2013 to October 2014, showing that the species emerged in May, became more active during July and August and started to hibernate at the end of October. Using capture-recapture method, the first survey was carried out from July to August, 2014. Ninety-eight toads were captured, marked, and released back into the site. In the second survey, 68 toads including 5 marked toads of the previous survey were captured. Based on these two-sample surveys, around 535-2,131 individual toads are estimated to inhabit the Daemyung retarding basin. Fifty-seven pitfall traps were installed in four habitat types: mounded and vegetated flatland, lowland swamps, and slope areas of both the southern and western parts of the basin in order to delineate spatial abundance of the endangered Kaloula borealis during the rainy season when the species is actively spawning. Pitfall traps at the spatially explicit array indicated that the species gradually move to the slope areas near the Daemyung stream, showing high occurrence density of the Kaloula borealis compared to the lowland swamps after the spawning season. The emergence of Kaloula borealis in the lowland swamps appeared to be comparatively higher during the spawning season. However, after the spawning season the toads species rapidly moved into the neighboring land of relatively high elevation such as the slope area towards the Dalsung protected wetlands and Daemyung River. These results are closely related to the migration patterns that toads tend to return to the sheltering sites and/or hibernating grounds after the spawning season. Also, the Kaloula borealis moved to the nearest high-level vegetated areas as the lowland swamps of their spawning grounds deteriorated with the expansion of permanent ponds due to the rise in the groundwater level.

An Experimental Study on the Variation of Hydraulic Characteristics due to Vegetation in Open Channel (개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • An understanding of the hydraulic characteristics in the compound channel with vegetation is important in designing stream restorations or managing the floodplain. A laboratory flume of 16 m long and 0.8 m wide was used for analysis of the hydraulic characteristics in the single section channel and the compound channel with artificial vegetation. Slope of experimental channel is 0.5 %. Discharges are ranged from $0.2\;m^3/s\;to\;$0.4\;m^3/s$. The experiments were done by changing water depth ratio, vegetation density and vegetation location. When water depth ratio in the single section channel with vegetation increase up to 3.5, the results showed that the increment of water depth due to vegetation may be ignored in practice. The maximum increment of water depth was measured up to 6 % in the compound channel with vegetation and the range of velocities increment in the low flow channel was from 25 % to 85 % compared with section average velocities. As the vegetation densities increase and water depth ratios decrease, the velocity of the low flow channel increased. The range of roughness coefficients in the vegetated reaches were estimated from 0.055 to 0.14 in the single section channel and from 0.063 to 0.085 in the compound channel using HEC-RAS and RMA-2 model.

Distribution and Food Source Analysis of Galerucella nipponensis Laboissiere (일본잎벌레 (Galerucella nipponensis Laboissiere)의 분포와 먹이원 분석)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kwon, Yong-Su;Kim, Nam-sin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In this study, we explain the environmental variables that mainly influence the spatial and seasonal pattern of Galerucella nipponensis in 38 wetland and stream located at mid-low Nakdong River. G. nipponensis were found at total of 32 wetland, was strongly positively correlated with the biomass of Trapa japonica (t=2.173, $r^2=0.013$, p<0.05). In result of seasonal distribution during 3 years, the largest density of G. nipponensis adult were observed in summer (7~8 months), egg and larva was recorded in only early spring (4~5 months). Rainfall were negatively related with the seasonal distribution of G. nipponensis. They were more abundant in dry season (2015 year) than rainy seasons(2013~2014 year). Stable isotope analysis showed that the G. nipponensis consumed as food source no submerged leaf of T. japonica than other plant. However, utilization of T. japonica on Galerucella nipponensis were not influence to plant biomass and/or species composition in vegetated bed. Those considered as adaptive strategies for sustainable habitat maintenance that because T. japonica use as not only food source but also their lives for G. nipponensis.

Changes in Landscape Characteristics of Stream Habitats with the Construction and Operation of River-Crossing Structures in the Geum-gang River, South Korea (금강에서 횡단구조물의 설치와 운영에 따른 하천 서식처의 경관 특성 변화)

  • Kim, Dana;Lee, Cheolho;Kim, Hwirae;Ock, Giyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.64-78
    • /
    • 2021
  • This study was conducted to find out the effect of the construction and operation of river-crossing structures on the habitat landscape characteristics in the Geum-gang River, South Korea. A total of three study reaches were selected in the downstream of the Daecheong Dam: the Buyong-ri reach, which is a control that is not affected by the construction and operation of the weir of the Four Rivers Project and Sejong-bo Weir reach and Gongju-bo Weir reach of the upper and lower sections of each weir that are affected by the weir construction and operation. The habitat type was classified, and then the structural characteristics of the landscape were analyzed using aerial photographs taken before and after the construction of the Daecheong Dam, before and after the construction of the weir, and before and after the weir gate operation. After the construction of Daecheong Dam in Geum River, the area of the bare land greatly decreased, and the area of grassland and woodland increased in the downstream of the dam. In addition, the patch number in the river landscape increased, the patch size decreased, and the landscape shape index and the habitat diversity increased. Therefore, after the construction of the dam, the bare land habitat was changed to a vegetated habitat, and the habitat was fragmented and diversified in the downstream of the dam. After the construction of the weirs, the area of open water increased by 18% in the Sejong-bo reach and by 90% in the Gongju-bo reach, and the landscape shape index of the open water decreased by 32% in the Sejong-bo reach and by 35% in the Gongju-bo reach, and the habitat diversity index decreased to 25% in the Sejong-bo reach and to 24% in the Gongju-bo reach. Therefore, the open water habitat was expanded, the shape of the habitat was simplified, and the habitat diversity decreased according to the construction of the weirs. After water-gate opening of the weir, the bare land that disappeared after the construction of the weir reappeared, and the landscape shape index and habitat diversity index increased in both terrestrial and open water habitats. Therefore, it was found that the landscape characteristics of the river habitats were restored to the pre-construction of the weir by the operation of the weir gate. The effect of weir gate opening was delayed in the downstream than in the upstream of the weir. Although the characteristics of the landscape structure in the river habitat changed due to the construction of the river-crossing structures, it is thought that proper technology development for the ecological operation of the structures is necessary as the habitat environments can be restored by the operation of these structures.