• Title/Summary/Keyword: Vegetable

Search Result 3,178, Processing Time 0.029 seconds

Effect of Drying Time and Additives regarding the Physical Properties of Vegetable Fatty Acid Soap (식물성 지방산 비누의 물리적 특성에 대한 건조시간과 첨가물의 효과)

  • Lee, Sung-Hee;Lee, Ki-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4032-4038
    • /
    • 2014
  • Vegetable fatty acid solid soap requires a drying process for moisture evaporation and hardness after being manufactured through saponification. Although the soap is manufactured by mixing additives mainly from natural ingredients, existing studies have focused primarily on the usability of vegetable solid soap. Consequently, research into the physical properties of vegetable fatty acid solid soap mixed with natural ingredients has been unsatisfactory. Therefore, this study attempted to compare and observe the changes in the physical properties (pH, surface tension, critical micelle concentration, and cleansing power) of solid soap in accordance with the drying period and additives (tea tree E.O and $TiO_2$) using pH paper, the Du Nouy measurement method, sedimentation method, and ultrasound washer. Regardless of the mixture with additives, vegetable fatty acid solid soap showed the same pH, and there was no change in the pH while maintaining pH 8 beginning from the $2^{nd}$ weeks to $12^{th}$ weeks of drying. In addition, as a result of measuring the surface tension and CMC, regardless of the drying period, only the soap added with $TiO_2$ showed an even value of 62.5mg/L, whereas the other soap specimens showed a decline in CMC to 25mg/L on the fourth week of drying. As a result of measuring the detergency, the removal efficiency of vegetable fatty acid solid soap mixed with tea tree E.O and $TiO_2$ and dried for four weeks was 4.50~4.65%, which was higher than that of the vegetable fatty acid solid soap without additives (3.62~3.92%).

Development of a Simple Method for Detecting Capsaicinoids Using Gibb's Reagent in Pepper (Gibb's Reagent를 이용한 캡사이시노이드 간이 분석 방법)

  • Jeong, Hee-Jin;Hwang, Do-Yeon;Ahn, Jeong-Tak;Chun, Jin-Young;Han, Ko-Eun;Lee, Woo-Moon;Kwon, Jin-Kyung;Lee, Yong-Jik;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.294-300
    • /
    • 2012
  • Capsaicinoids are responsible for the pungency of Capsicum species. Among the several reported methods for quantifying capsaicinoids in pepper, liquid chromatography methods such as TLC and HPLC have been the most widely used due to their precision and reliability. However, they are quite expensive and time consuming to be applied to the field breeding. In this paper, we demonstrated that Gibb's reagent, 2,6-dichloroquinone chlorimide, mediated measurement of capsaicinoids is a simple and reliable method for determining the presence/absence of capsaicinoids, and estimating the amount of capsacinoids in pepper fruits. The capsaicinoids could be also detected via colorimetiric reactions of the Gibb's reagent. This simple method has been verified to be as accurate as the HPLC analysis. We have also modified this method for a high through-put analysis. This method will be useful for measuring capsaicinids in pungency breeding programs in pepper.

Comparison of Growth and Freshness Characteristics as Affected by CO2 Treatment during Cultivation on Radish Sprout Vegetable (무 싹채소 탄산 가스 처리에 따른 생육과 수확후 품질 특성 비교)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • As sprout vegetables of interest growing, its maintaining the quality of the technology was needed to solve the problem of increasing growth and maintain quality after harvest. This experiment proved that the quality of radish sprout vegetable was affected by CO2 treatment during cultivation. Thus, the effect of CO2 treatment during cultivation on postharvest quality of radish sprout vegetable was investigated in terms of the quality changes in weight loss, gas partial pressure, SPAD, hue angle external appearance during storage at polypropylene film (thickness 30 ㎛) at 10℃. CO2 treatment used the way to gas with 700 ppm or carbonated water with 700 ppm and 1,400 ppm. The study revealed that growths on CO2 treated plant were more than those of non-treatment on stem length. After harvesting, the CO2 treated plant and control growing little different characteristics on fresh weight, plant length and so on. However, there were no differences between the CO2 treated plant and control on the Fv/Fm and SOD (superoxide dismutase). In gas partial pressure, the O2 consumption and CO2 accumulation of the CO2 treated plant tended to be more than that of non-treated plant. This study also checked that after packaging, the effects of CO2 treatment during cultivation on the quality of radish sprout vegetable was not significant. However, there were tended to CO2 treatments were lower value compared to control on SPAD, hue angle and general appearance. CO2 treatments of radish sprouting vegetable before harvest were improve growth of stem length, but ones were not improving the maintain of quality on radish sprout vegetable during shelf-life period. The results indicated that CO2 treatment only affected stem elongation until radish sprout vegetable its growth.

Effects of Planting Density on Growth and Yield of Vegetable Soybean Varieties (파종밀도가 풋콩 품종의 생육 및 수량에 미치는 영향)

  • Lee, Seung-Su;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • The objective of experiment was to investigate the effects of planting density on growth and yield of vegetable soybean, and to clarify the optimum planting density of vegetable soybean in the middle west region of Korea. The field experiment with 4 levels of planting density was carried out at Yesan area in $2005{\sim}2006$. The days from seeding to flowering and the days from seeding to harvesting and lodging were not significantly different among planting distance. The stem length was increased as planting distance was shortened but the number of node, branch, pod per branch, pod per individual, weight of stem and pod, one hundred pod weight and rate of 2+3 seed per pod were decreased as planting density was increased. The size of vegetable soybeans was not significantly different among planting distance, but the harvest index of vegetable soybean was decreased as planting distance was shortened. Yield of vegetable soybean was increased as planting distance was decreased. However, the approriate densities for stem and pod weight per a plant, number of pod per a branch and the vegetable soybean yield of 2+3 seed per pod were different from that density. The optimal planting distance of varieties was $60{\sim}25\;cm$ in Sunheukkong and Ilpumgeomjeongkong and was $60{\sim}35\;cm$ in Galmikong.

Quality Characteristics of Pork Patties Containing Silkworm Powder and Vegetable Worm (Paecilomyces Japonica) during Cold Storage (누에분말 및 누에동충하초분말 함유 돈육 패티의 냉장저장 중 품질변화)

  • Kim, Il-Suk;Jin, Sang-Keun;Jo, Cheor-Un;Lee, Moo-Ha;Jang, Ae-Ra
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.521-528
    • /
    • 2008
  • This study was performed to evaluate the quality change of pork patties containing silkworm powder and vegetable worm (Paecilomycis japonica) stored for 9 days at $5^{\circ}C$. pH values were higher in treatment groups than that in controls by storage day 6. L (lightness) and a (redness) value were decreased with increasing addition of silkworm powder and vegetable worm powder in pork patties (p<0.05). However, b value (yellowness) was increased with increasing addition amounts of the silkworm powder and the vegetable worm powder (p<0.05). Water holding capacity (WHC) of pork patties was not affected by the silkworm powder and the vegetable worm powder, while pork patties containing 0.4% silkworm powder (T2) showed low cooking loss (p<0.05). Pork patties containing either silkworm powder and vegetable worm alone or a combination of them showed lower lipid oxidation value than that of control (p<0.05). Sensory preference of pork patties was decreased with increased of storage days. The overall acceptance was higher in treatment groups than at control groups at the initial day (p<0.05), yet no significant difference was found during storage. From these results, 0.4% silkworm powder decreased not only cooking loss but also lipid oxidation of pork patties. Also, no adverse effect was found in water holding capacity (WHC) and sensory preference of pork patties. Therefore, the silkworm powder and the vegetable worm powder could be useful to pork meat product industry as additives.

Safety Effects against Nitrite and Nitrosamine as well as Anti-mutagenic Potentials of Kale and Angelica keiskei Vegetable Juices (케일과 신선초 채소즙의 안전성 및 항돌연변이 효과)

  • Kim, Jong-Dai;Lee, Ok-Hwan;Lee, Jong Seok;Jung, Hye-Youn;Kim, Bohkyung;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1207-1216
    • /
    • 2014
  • Vegetables contain high levels of nitrate, which can be converted to nitrite for reaction with secondary amines to form nitrosamines. In this study, we evaluated safety effects against nitrite and nitrosamine as well as anti-mutagenic activities of vegetable juices. To do this, the contents of nitrate, nitrite, and nitrosamines were determined in vegetable juices. The safety effects against nitrite and nitrosamine formation were also investigated under simulated human gastric conditions. The contents of nitrate and nitrite in common and organic kale and Angelica keiskei juices were 931~2,052 mg/kg and 13~82 mg/kg, respectively. However, seven kinds of nitrosamines were not detected in the vegetables juices. The nitrate content decreased when vegetable juices were digested under simulated human gastric conditions. Nitrosamine (N-nitrosodimethylamine) formation under simulated human gastric conditions was inhibited by addition of vegetable juices. In addition, vegetable juices, especially organically cultivated juices, showed anti-mutagenic effects in a Salmonella assay system. These results suggest that organically cultivated vegetable juices are a promising health-promoting source.

An Evaluation of Chronic Disease Risk Based on the Percentage of Energy from Carbohydrates and the Frequency of Vegetable Intake in the Korean Elderly: Using the 2007-2009 Korea National Health and Nutrition Examination Survey (한국 노인 식사의 탄수화물 에너지비와 채소섭취 빈도에 기초한 만성질환 위험성 평가: 2007-2009년 국민건강영양조사 자료 이용)

  • Suh, Yoon Suk;Park, Min Seon;Chung, Young-Jin
    • Korean Journal of Community Nutrition
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2015
  • Objectives: Korean elderly people are known to consume diets high in carbohydrates low in vegetables compared to other age groups. This study evaluated the chronic disease risks and nutritional status in this group based on the percentage of energy from carbohydrates and the frequency of vegetable intake. Methods: Using the 2007~2009 Korean National Health Nutrition Examination Survey data, except those who were undergoing treatment for chronic disease, final 1,487 subjects aged 65 and older were divided into 4 groups: moderate carbohydrate energy ratio of 55~70% and low frequency of vegetable intake defined as less than 5 times per day (MCLV), moderate carbohydrate ratio and high frequency of vegetable intake more than 5 times (MCHV), high carbohydrate energy ratio above 70% and low frequency of vegetable intake less than 5 times (HCLV), and high carbohydrate ratio and high frequency of vegetable intake more than 5 times (HCHV). All data were analyzed after the application of weighted value, using a general linear model or logistic regression. Results: More than half of Korean elderly consumed diets with HCLV, and this group showed poor nutritional status and lower frequency of intake of most food items, but with no risk of chronic disease such as diabetes, obesity, hypertension, cardiovascular disease or anemia probably due to low intake of energy. On the contrary, MCHV group with a high percentage of energy from fat and protein showed the highest intake of energy and most nutrients, the highest frequency of intake of most of food items and a tendency of high risk of abdominal obesity, being followed by the MCLV group. Meanwhile, HCHV group showed a tendency of high risk of hypertension, followed by HCLV group with low frequency of intake of vegetables compared with the two moderate carbohydrate groups. Conclusions: The results suggested that the percentage of energy from carbohydrate and the frequency of vegetable intake affected the nutritional status, but not significantly affected the risk of chronic disease in Korean elderly. Further studies using more detailed category of % energy from carbohydrates and of type and amount of vegetables with consideration of individual energy intake level, excessive or deficient, are needed to confirm the results.

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Effect of Exogenous Application of Sodium Nitroprusside on Alleviation of Low Temperature Stress in Kimchi Cabbage (Brassica rapa ssp. pekinensis) (Sodium Nitroprusside 처리가 배추의 저온 스트레스 경감에 미치는 영향)

  • Jinhyoung Lee;Seunghwan Wi;Hyejin Lee;Sanggyu Lee;Minseo Kang;Taeyang Kim;Seonghoe Jang;Heeju Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7℃) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.