• Title/Summary/Keyword: Vee Formation

Search Result 3, Processing Time 0.019 seconds

On the Occurrence Mechanism of the Ice Spike (솟는 고드름의 형성 원리)

  • Byun, Hi-Ryong;Yoon, Ma-Byong;Shim, Jae-Myun;Kim, Gabyn;Kwon, Sang-Hoon;Kwon, Hui-nae;Kim, Jin-Ah
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.73-84
    • /
    • 2016
  • A method to make ice spike using home refrigerator with ice tray was found. Many experiments have carried out with this method and many natural phenomena occurring on the formation of ice spike are found. A new concept of the Latter Freezing Water (LFW) was imported to explain the ice spike formation. At LFW position on water surface, the Sprout of Super cooled Water (SSW) grows by the Volume Expansion Effect (VEE) caused by the phase change of water in water. And air bubbles that are expelled from ice during freezing process, gather, rise, and detonate at the upper most part of SSW that make SSW freeze and grow upward with the water pipe in it. Together with VEE the capillarity in the water pipe makes the column grow more, that makes the ice spike. Many other findings were succeeded; 1) Ice spike process is completed before the whole water freezes. 2) If water is corrupted or shocked, even though it is very slight, ice spike is not generated. 3) Rain water contains the most LFW among all kind of waters used in experiments. 4) LFW is changed into normal water after passing the ice spike. 5) A new concept of the ice bullet is introduced. 6) The reason of frequent occurrences of the ice spike at Mt. Mai is investigated also.

Numerical Study on the Aerodynamic Characteristics of Wings on the Formation Flight (편대비행 중인 날개들의 공력특성에 대한 수치적 연구)

  • Lee, Seung-Jae;Cho, Jeong-Hyun;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • The steady-state aerodynamic characteristics of wings on the formation flight were analyzed using the Vortex Lattice Method. When two wings were at formation flight, the sectional lift coefficient of a rear wing was increased due to a front wing. The result showed that the lift drag ratio increased as the rear wing were placed downward and decreased as the lateral spacing between wings increased. The difference of lift drag ratio between forward wing and rear wing increase as the aspect ratio of wings increased. When a rear wings and a forward wings placed at the same height, wings on the formation flight had the maximum lift drag ratio. The results showed that the benefit of the formation flight increased as the number of wings on the formation flight increased.

Construction of a Lactococcal Shuttle/Expression Vector Containing a $\beta$-Galactosidase Gene as a Screening Marker (선별마커로써 $\beta$-Galactosidase 유전자를 포함한 Lactococcus용 셔틀/발현 벡터 제조)

  • Han Tae Un;Jeong Do-Won;Cho San Ho;Lee Jong-Hoon;Chung Dae Kyun;Lee Hyong Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • A new lactococcal shuttle/expression vector for lactococci, pWgal13T, was constructed using a $\beta$-galactosi-dase gene (lacZ) from Lacfococcus lactis ssp. lactis ATCC 7962 as a screening marker. The pWgal 13T was introduced into Escherichia coli DH5a and L. lactis MG1363, and was easily detected by the formation of blue colonies on a medium containing X-gal without any false transformants. Also, the quantitatively lacZ activity of pWgal13T was measured in L. lactis ssp. cremoris MG1363, and was found to be four times higher than that of L. lactis ssp. lactis ATCC7962 grown on a medium containing glucose, which shows that the lacZ gene of pWgal13T can be used for the efficient screening of L. lactis on general media. The pWgal13T was equipped with a lactococcal replicon of pWV01 from L. lactis Wg2, the new promoter P13C from L. lactis ssp. cremoris LM0230, multiple cloning sites, and a terminator for the expression of a relevant gene. The vee-tor pWgal13T was used for the expression of the EGFP gene in E. coli and L. lactis. These results show that the lactococcal expression/shuttle vector constructed in the present study can be used for the production of foreign proteins in E. coli and L. lactis.