주간에 활용될 수 있는 별 센서의 성능을 알아보기 위해, 주간 별 센서 관측 모델을 개발하였다. 주간 동안 별 센서가 감지하게 될 별들에 대한 중심찾기 오차는 그 모델을 사용해서 계산되었다. 별 센서가 운용되는 주간 환경의 대기 물리량을 계산하기 위해 표준 대기 모델(LOWTRAN7)이 사용되었다. 주간 별 센서 관측 모델에는 별과 태양 사이의 다양한 분리각, 중심찾기 알고리즘, 그리고 별 센서의 다양한 시스템 특성이 고려되었다. 개발된 별 센서 모델은 벡터 관측을 통한 자세결정 성능의 예측에 있어서 보다 현실적인 오차 정보를 제공하게 될 것이다.
자동문서분류(Text Classification)는 주어진 텍스트 문서를 이에 적합한 카테고리로 분류하는 텍스트 마이닝 기술 중의 하나로서 스팸메일 탐지, 뉴스분류, 자동응답, 감성분석, 쳇봇 등 다양한 분야에 활용되고 있다. 일반적으로 자동문서분류 시스템은 기계학습 알고리즘을 활용하며, 이 중에서 텍스트 데이터에 적합한 알고리즘인 나이브베이즈(Naive Bayes), 지지벡터머신(Support Vector Machine) 등이 합리적 수준의 성능을 보이는 것으로 알려져 있다. 최근 딥러닝 기술의 발전에 따라 자동문서분류 시스템의 성능을 개선하기 위해 순환신경망(Recurrent Neural Network)과 콘볼루션 신경망(Convolutional Neural Network)을 적용하는 연구가 소개되고 있다. 그러나 이러한 최신 기법들이 아직 완벽한 수준의 문서분류에는 미치지 못하고 있다. 본 논문은 그 이유가 텍스트 데이터가 단어 차원 중심의 벡터로 표현되어 텍스트에 내재한 의미 정보를 훼손하는데 주목하고, 선행 연구에서 그 효능이 검증된 시멘틱 텐서공간모델에 기반하여 심층 신경망 아키텍처를 제안하고 이를 활용한 문서분류기의 성능이 대폭 상승함을 보인다.
In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.
Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.
In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.
고속 철도 추진시스템의 고속화 및 급전시스템의 전력 품질향상을 위한 연구가 현재 활발히 진행되고 있으며 이를 위한 멀티레벨 전력변환기를 적용한 고속전철 추진시스템의 연구가 필요하다. 본 논문은 멀티레벨 전력변환기의 제어기법 및 공간전압벡터 변조기법(Space Vector PWM, SVPWM)의 모델을 제안한다. 단상 컨버터 제어방식으로는 널리 사용되고 있는 순시치 전류제어 방식을 대신하여, 과도상태 개선 및 제어 속응성을 향상시키기 위하여 동기좌표계에서의 전류 제어 방식을 사용한 제어기법을 적용하였으며, 단상 멜티레벨 컨버터 및 3레벨 인버터에 적용되는 SVPWM기법의 시뮬레이션 모델을 제안하고 인버터 축소모델을 통하여 모델링의 타당성을 보인다.
Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.
Journal of the Korean Data and Information Science Society
/
제20권5호
/
pp.879-886
/
2009
본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.
In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.
관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.