• 제목/요약/키워드: Vector Space Model

검색결과 367건 처리시간 0.032초

주간 별 센서 관측 모델 개발 및 중심찾기 성능 분석 (DEVELOPMENT OF DAYTIME OBSERVATION MODEL FOR STAR SENSOR AND CENTROIDING PERFORMANCE ANALYSIS)

  • 나자경;이유;김용하
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권3호
    • /
    • pp.273-282
    • /
    • 2005
  • 주간에 활용될 수 있는 별 센서의 성능을 알아보기 위해, 주간 별 센서 관측 모델을 개발하였다. 주간 동안 별 센서가 감지하게 될 별들에 대한 중심찾기 오차는 그 모델을 사용해서 계산되었다. 별 센서가 운용되는 주간 환경의 대기 물리량을 계산하기 위해 표준 대기 모델(LOWTRAN7)이 사용되었다. 주간 별 센서 관측 모델에는 별과 태양 사이의 다양한 분리각, 중심찾기 알고리즘, 그리고 별 센서의 다양한 시스템 특성이 고려되었다. 개발된 별 센서 모델은 벡터 관측을 통한 자세결정 성능의 예측에 있어서 보다 현실적인 오차 정보를 제공하게 될 것이다.

자동문서분류를 위한 텐서공간모델 기반 심층 신경망 (A Tensor Space Model based Deep Neural Network for Automated Text Classification)

  • 임푸름;김한준
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.3-13
    • /
    • 2018
  • 자동문서분류(Text Classification)는 주어진 텍스트 문서를 이에 적합한 카테고리로 분류하는 텍스트 마이닝 기술 중의 하나로서 스팸메일 탐지, 뉴스분류, 자동응답, 감성분석, 쳇봇 등 다양한 분야에 활용되고 있다. 일반적으로 자동문서분류 시스템은 기계학습 알고리즘을 활용하며, 이 중에서 텍스트 데이터에 적합한 알고리즘인 나이브베이즈(Naive Bayes), 지지벡터머신(Support Vector Machine) 등이 합리적 수준의 성능을 보이는 것으로 알려져 있다. 최근 딥러닝 기술의 발전에 따라 자동문서분류 시스템의 성능을 개선하기 위해 순환신경망(Recurrent Neural Network)과 콘볼루션 신경망(Convolutional Neural Network)을 적용하는 연구가 소개되고 있다. 그러나 이러한 최신 기법들이 아직 완벽한 수준의 문서분류에는 미치지 못하고 있다. 본 논문은 그 이유가 텍스트 데이터가 단어 차원 중심의 벡터로 표현되어 텍스트에 내재한 의미 정보를 훼손하는데 주목하고, 선행 연구에서 그 효능이 검증된 시멘틱 텐서공간모델에 기반하여 심층 신경망 아키텍처를 제안하고 이를 활용한 문서분류기의 성능이 대폭 상승함을 보인다.

APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES

  • Choi, Seong-Hwan;Moon, Yong-Jae;Vien, Ngo Anh;Park, Young-Deuk
    • 천문학회지
    • /
    • 제45권2호
    • /
    • pp.31-38
    • /
    • 2012
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • 음성과학
    • /
    • 제13권4호
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

고속전철 추진시스템을 위한 멀티레벨 전력변환기의 제어기법 및 SVPWM 모델링 (Modeling of SVPWM and Control Method for Driving Systems of High-speed Trains by using Multi-level Power Converters)

  • 이동명;홍찬희
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.136-145
    • /
    • 2009
  • 고속 철도 추진시스템의 고속화 및 급전시스템의 전력 품질향상을 위한 연구가 현재 활발히 진행되고 있으며 이를 위한 멀티레벨 전력변환기를 적용한 고속전철 추진시스템의 연구가 필요하다. 본 논문은 멀티레벨 전력변환기의 제어기법 및 공간전압벡터 변조기법(Space Vector PWM, SVPWM)의 모델을 제안한다. 단상 컨버터 제어방식으로는 널리 사용되고 있는 순시치 전류제어 방식을 대신하여, 과도상태 개선 및 제어 속응성을 향상시키기 위하여 동기좌표계에서의 전류 제어 방식을 사용한 제어기법을 적용하였으며, 단상 멜티레벨 컨버터 및 3레벨 인버터에 적용되는 SVPWM기법의 시뮬레이션 모델을 제안하고 인버터 축소모델을 통하여 모델링의 타당성을 보인다.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석 (Analysis of market share attraction data using LS-SVM)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.879-886
    • /
    • 2009
  • 본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.

  • PDF

로보트 매니퓰레이터의 운동과 힘 제어 (Motion and force control of robot manipulator)

  • 이남구;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.174-178
    • /
    • 1991
  • In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.

  • PDF

어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델 (One-Class Classification Model Based on Lexical Information and Syntactic Patterns)

  • 이현구;최맹식;김학수
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.817-822
    • /
    • 2015
  • 관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.