• Title/Summary/Keyword: Vector Generation

Search Result 548, Processing Time 0.03 seconds

Image Compression Using DCT Map FSVQ and Single - side Distribution Huffman Tree (DCT 맵 FSVQ와 단방향 분포 허프만 트리를 이용한 영상 압축)

  • Cho, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2615-2628
    • /
    • 1997
  • In this paper, a new codebook design algorithm is proposed. It uses a DCT map based on two-dimensional discrete cosine of transform (2D DCT) and finite state vector quantizer (FSVQ) when the vector quantizer is designed for image transmission. We make the map by dividing input image according to edge quantity, then by the map, the significant features of training image are extracted by using the 2D DCT. A master codebook of FSVQ is generated by partitioning the training set using binary tree based on tree-structure. The state codebook is constructed from the master codebook, and then the index of input image is searched at not master codebook but state codebook. And, because the coding of index is important part for high speed digital transmission, it converts fixed length codes to variable length codes in terms of entropy coding rule. The huffman coding assigns transmission codes to codes of codebook. This paper proposes single-side growing huffman tree to speed up huffman code generation process of huffman tree. Compared with the pairwise nearest neighbor (PNN) and classified VQ (CVQ) algorithm, about Einstein and Bridge image, the new algorithm shows better picture quality with 2.04 dB and 2.48 dB differences as to PNN, 1.75 dB and 0.99 dB differences as to CVQ respectively.

  • PDF

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework (LLM 애플리케이션 아키텍처를 활용한 생성형 AI 서비스 구현: RAG모델과 LangChain 프레임워크 기반)

  • Cheonsu Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.129-164
    • /
    • 2023
  • In a situation where the use and introduction of Large Language Models (LLMs) is expanding due to recent developments in generative AI technology, it is difficult to find actual application cases or implementation methods for the use of internal company data in existing studies. Accordingly, this study presents a method of implementing generative AI services using the LLM application architecture using the most widely used LangChain framework. To this end, we reviewed various ways to overcome the problem of lack of information, focusing on the use of LLM, and presented specific solutions. To this end, we analyze methods of fine-tuning or direct use of document information and look in detail at the main steps of information storage and retrieval methods using the retrieval augmented generation (RAG) model to solve these problems. In particular, similar context recommendation and Question-Answering (QA) systems were utilized as a method to store and search information in a vector store using the RAG model. In addition, the specific operation method, major implementation steps and cases, including implementation source and user interface were presented to enhance understanding of generative AI technology. This has meaning and value in enabling LLM to be actively utilized in implementing services within companies.

Optimization of Uneven Margin SVM to Solve Class Imbalance in Bankruptcy Prediction (비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결)

  • Sung Yim Jo;Myoung Jong Kim
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.23-40
    • /
    • 2022
  • Although Support Vector Machine(SVM) has been used in various fields such as bankruptcy prediction model, the hyperplane learned by SVM in class imbalance problem can be severely skewed toward minority class and has a negative impact on performance because the area of majority class is expanded while the area of minority class is invaded. This study proposed optimized uneven margin SVM(OPT-UMSVM) combining threshold moving or post scaling method with UMSVM to cope with the limitation of the traditional even margin SVM(EMSVM) in class imbalance problem. OPT-UMSVM readjusted the skewed hyperplane to the majority class and had better generation ability than EMSVM improving the sensitivity of minority class and calculating the optimized performance. To validate OPT-UMSVM, 10-fold cross validations were performed on five sub-datasets with different imbalance ratio values. Empirical results showed two main findings. First, UMSVM had a weak effect on improving the performance of EMSVM in balanced datasets, but it greatly outperformed EMSVM in severely imbalanced datasets. Second, compared to EMSVM and conventional UMSVM, OPT-UMSVM had better performance in both balanced and imbalanced datasets and showed a significant difference performance especially in severely imbalanced datasets.

Restoration of Fertility by Suppression of Male Sterility- Induced Gene Using an Antisense Construct (웅성불임 유전자의 발현억제를 이용한 임성회복)

  • Park, Young-Doo;Park, Beom-Seok;Kim, HyunUk;Jin, Yong-Moon
    • Horticultural Science & Technology
    • /
    • v.17 no.4
    • /
    • pp.473-475
    • /
    • 1999
  • This study was carried out to restore the fertility by suppression of male sterility-induced gene using an antisense construct. Tobacco (cv. Petit Havana SR1) was transformed with the binary vector containing a GBAN215-6 promoter, an antisense diphtheria toxin (DTx-A) gene (pKDA215b) and a hygromycin resistant gene. Seventy-six confirmed transgenic plants regenerated from leaf disks were designated as the $R_0$ generation and selfed to produce the $R_1$ generation. From the inheritance study, five $R_1$ lines with multiple copies of the antisense construct were selected and selfed to identify homozygosity for the antisense construct. In order to restore fertility and finally to select restore lines, five $R_2$ lines with multiple copies of the antisense construct were crossed with male sterile plants. From these crosses, three different phenotypes have been observed: completely restored, partially restored, and not restored pollens, and otherwise tobacco plants were phenotypically same as normal plants. These plants were scored for the degree of restoration and selected for further study.

  • PDF

Engine of computational Emotion model for emotional interaction with human (인간과 감정적 상호작용을 위한 '감정 엔진')

  • Lee, Yeon Gon
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.503-516
    • /
    • 2012
  • According to the researches of robot and software agent until now, computational emotion model is dependent on system, so it is hard task that emotion models is separated from existing systems and then recycled into new systems. Therefore, I introduce the Engine of computational Emotion model (shall hereafter appear as EE) to integrate with any robots or agents. This is the engine, ie a software for independent form from inputs and outputs, so the EE is Emotion Generation to control only generation and processing of emotions without both phases of Inputs(Perception) and Outputs(Expression). The EE can be interfaced with any inputs and outputs, and produce emotions from not only emotion itself but also personality and emotions of person. In addition, the EE can be existed in any robot or agent by a kind of software library, or be used as a separate system to communicate. In EE, emotions is the Primary Emotions, ie Joy, Surprise, Disgust, Fear, Sadness, and Anger. It is vector that consist of string and coefficient about emotion, and EE receives this vectors from input interface and then sends its to output interface. In EE, each emotions are connected to lists of emotional experiences, and the lists consisted of string and coefficient of each emotional experiences are used to generate and process emotional states. The emotional experiences are consisted of emotion vocabulary understanding various emotional experiences of human. This study EE is available to use to make interaction products to response the appropriate reaction of human emotions. The significance of the study is on development of a system to induce that person feel that product has your sympathy. Therefore, the EE can help give an efficient service of emotional sympathy to products of HRI, HCI area.

  • PDF

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm (빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적)

  • Park, Min Woo;Won, Kwang Hee;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.764-781
    • /
    • 2013
  • In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.

Energy Perspective of Sugar Industries in Pakistan: Determinants and Paradigm Shift

  • Siddiqui, Muhammad Ayub;Shoaib, Adnan
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.7-17
    • /
    • 2012
  • The aim of this study is to empirically explore micro and macroeconomic factors affecting the Pakistani sugar industries and searching the energy potential of this industry, through the survey of literature. The empirical part has been explored by employing Vector Autoregression (VAR), Granger Causality tests and simultaneous equation models through quarterly data for the period of 1991q2-2008q4. The study also aims to devise policies for the development of sugar industries and identify its growing importance for the energy sector of Pakistan. Empirical tests applied on the domestic prices of sugar, domestic interest rates, and exchange rate, productive capacities of sugar mills, per capita income, world sugar prices on cultivable area and sugar production reveal very useful results. Results reveal an improvement of productive capacity of the sugar mills of Pakistan on account of increasing crushing capacity of this sector. Negative effect of rising wholesale prices on the harvesting area was also observed. Profit earnings of the sugar mills significantly increase with the rise of sugar prices but the system does not exist for the farming community to share the rising prices of sugar. The models indicate positive and significant effect of local prices of sugar on its volume of import. Another of the findings of this study positively relates the local sugar markets with the international prices of sugar. Additionally, the causality tests results reveal exchange rate, harvesting area and overall output of sugarcane to have significant effects on the local prices of sugar. Similarly, import of sugar, interest rate, per capita consumption of sugar, per capita national income and the international prices of sugar also significantly affect currency exchange rate of Pakistani rupee in terms of US$. The study also finds sugar as an essential and basic necessity of the Pakistani consumers. That is why there are no significant income and price effects on the per capita consumption of sugar in Pakistan. All the empirical methods reiterate the relationship of variables. Economic policy makers are recommended to improve governance and management in the production, stock taking, internal and external trading and distribution of sugar in Pakistan using bumper crop policies. Macroeconomic variables such as interest rate, exchange rate per capita income and consumption are closely connected with the production and distribution of sugar in Pakistan. The cartelized role of the sugar industries should also be examined by further studies. There is need to further explore sugar sector of Pakistan with the perspective of energy generation through this sector; cartelized sugar markets in Pakistan and many more other dimensions of this sector. Exact appraisal of sugar industries for energy generation can be done appropriately by the experts from applied sciences.

  • PDF

A study on the connected-digit recognition using MLP-VQ and Weighted DHMM (MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구)

  • Chung, Kwang-Woo;Hong, Kwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.96-105
    • /
    • 1998
  • The aim of this paper is to propose the method of WDHMM(Weighted DHMM), using the MLP-VQ for the improvement of speaker-independent connect-digit recognition system. MLP neural-network output distribution shows a probability distribution that presents the degree of similarity between each pattern by the non-linear mapping among the input patterns and learning patterns. MLP-VQ is proposed in this paper. It generates codewords by using the output node index which can reach the highest level within MLP neural-network output distribution. Different from the old VQ, the true characteristics of this new MLP-VQ lie in that the degree of similarity between present input patterns and each learned class pattern could be reflected for the recognition model. WDHMM is also proposed. It can use the MLP neural-network output distribution as the way of weighing the symbol generation probability of DHMMs. This newly-suggested method could shorten the time of HMM parameter estimation and recognition. The reason is that it is not necessary to regard symbol generation probability as multi-dimensional normal distribution, as opposed to the old SCHMM. This could also improve the recognition ability by 14.7% higher than DHMM, owing to the increase of small caculation amount. Because it can reflect phone class relations to the recognition model. The result of my research shows that speaker-independent connected-digit recognition, using MLP-VQ and WDHMM, is 84.22%.

  • PDF