• Title/Summary/Keyword: Vector Field Method

Search Result 516, Processing Time 0.03 seconds

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.