S&P 500과 RUSSELL 2000, DJIA, Nasdaq 100 4가지 미국 주가지수의 실현변동성(realized volatility, RV)을 예측하는데 있어서 사람들의 관심 지표로 삼을 수 있는 인터넷 검색량(search volume, SV) 지수와 내재변동성(implied volatility, IV)를 이용하여 LSTM 딥러닝(deep learning) 방법으로 RV의 예측력을 높이고자하였다. SV을 이용한 LSTM 방법의 실현변동성 예측력이 기존의 기본적인 vector autoregressive (VAR) 모형, vector error correction (VEC)보다 우수하였다. 또한, 최근 제안된 RV와 IV의 공적분 관계를 이용한 vector error correction heterogeneous autoregressive (VECHAR) 모형보다도 전반적으로 예측력이 더 높음을 확인하였다.
This paper considers the cointegrating vector estimator in the error correction model with stationary covariates, which combines the stationary vector autoregressive model and the nonstationary error correction model. The cointegrating vector estimator is shown to follow the locally asymptotically mixed normal distribution. The variance of the estimator depends on the covariate effect of stationary regressors, and the asymptotic efficiency improves as the magnitude of the covariate effect increases. An economic application of the money demand equation is provided.
International journal of advanced smart convergence
/
제12권4호
/
pp.171-176
/
2023
This study is about a speech recognition error correction system designed to detect and correct speech recognition errors before natural language processing to increase the success rate of intent analysis in natural language processing with optimal efficiency in various service domains. An encoder is constructed to embedded the correct speech token and one or more error speech tokens corresponding to the correct speech token so that they are all located in a dense vector space for each correct token with similar vector values. One or more utterance tokens within a preset Manhattan distance based on the correct utterance token in the dense vector space for each embedded correct utterance token are detected through an error detector, and the correct answer closest to the detected error utterance token is based on the Manhattan distance. Errors are corrected by extracting the utterance token as the correct answer.
This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.
This paper investigates the impact of ethanol mandate on the price relationship between corn and beef using the monthly time-series data from January 2003 through December 2013. In addition, we examine the non-linearity in ethanol, corn, and beef markets. Based on the threshold cointegration test, we find the symmetric relationship in pairs with ethanol production-corn price and ethanol production-beef price whereas there is the asymmetric relationship between prices of corn and beef. Employing the threshold vector error correction and vector error correction models, we also find that the corn price in the U.S is caused by both ethanol production and beef price in a long-run when the beef price is relatively high. On the other hand, the corn price does not cause both ethanol production and beef price in the long run. Findings from this study imply that demanders for corn such as ethanol and beef producers have price leadership on corn producers.
본 연구는 오차교정모형을 활용해 건화물선과 유조선 일간 해상운임의 동태적 특성과 예측 정확도를 분석한다. 공적분된 시계열 자료의 오차를 계산하기 위해 본 연구는 공통 확률적 추세 모형(Common Stochastic Trend Model, CSTM 모형)과 벡터오차교정모형(Vector Error Correction Model, VECM 모형)을 활용한다. 먼저, CSTM 모형의 오차를 사용한 오차교정모형이 VECM 모형의 경우보다 교정계수(adjustment speed coefficient)가 경제학적 이론에 더 부합하는 결과를 보인다. 나아가 조정결정계수(adjR2) 측면에서도 CSTM 모형의 경우가 VECM 모형에 비해 모형 적합도가 큰 것으로 나타난다. 둘째, 예측 정확도를 판단하는 지표인 평균 절대 오차와 평균 절대 척도 오차를 살펴보면, CSTM 모형의 오차를 이용한 모형이 VECM 모형의 오차를 이용한 모형보다 총 15가지 경우 중에 12가지 경우에서 예측 정확도가 높은 것을 확인할 수 있다. 미래 연구주제로서 1) 두 가지 오차를 모두 활용하는 분석 및 예측 과제, 2) 원자재 및 에너지 자원 시장의 데이터를 추가하는 과제, 3) 오차항의 부호에 따라 교정계수를 다르게 추정하는 과제 등을 제시한다.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1573-1583
/
2016
주택가격은 대내외적으로 경기관련 많은 변수들에 의해 영향을 받기 때문에 다변량분석의 경우 이와 관련된 변수들간의 상호관련성을 검정하여야 한다. 그랜저 인과성 검정결과 변수들간에 서로 인과성이 있는 것으로 나타났다. 또한 변수들 사이에 공적분 존재유무를 확인한 결과 공적분이 존재하므로 오차수정항이 포함된 벡터오차수정모형을 이용하여 분석을 시도하였다. ARIMA 및 VAR 모형과의 예측력 실증비교 결과 벡터오차수정모형에 의한 예측력이 이들 두 모형에 비해 우수함을 확인할 수 있었다.
Journal of the Korean Data and Information Science Society
/
제22권3호
/
pp.401-412
/
2011
본 연구는 벡터오차수정모형을 이용하여 유럽 탄소배출권 현물가격의 일간 시계열자료를 분석한다. 내생변수로는 탄소배출권가격 이외에 오일가격, 천연가스가격, 전력가격, 석탄가격 등 모두 5개 변수를 고려하며, 분석기간은 유럽 배출권가격의 왜곡이 발생한 제1단계 기간 (2005~2007년)을 피해 제2단계 기간 (2008년 4월 21일~2010년 3월 31일)을 대상으로 하였다. 시계열변수의 안정성 및 공적분 검정 결과, 모든 변수들이 단위근을 갖으며 또한 공적분 벡터가 존재하는 것으로 나타나서 분석모형으로서 벡터자기회귀모형 대신에 벡터오차수정모형을 채택하였다. 분석결과, (1) 오일, 천연가스, 전력 등의 가격이 배출권가격에 대해 원인으로 작용하는 그랜저인과관계가 존재하였다. (2) 충격 반응분석에서 배출권가격은 오일가격의 외생적 충격에 대해 가장 크게 반응하였고, 석탄가격의 충격에 대해서는 초기 상승 후 하락, 전력가격과 천연가스가격의 충격에 대해서는 초기 상승 후 음 (-)으로 감소하는 반응을 보였다. (3) 예측오차 분산분해 분석에서 배출권가격에 대해 가장 큰 영향을 주는 요인은 초기 (3기)에는 오일가격>석탄가격>천연가스가격>전력가격의 순이었으나 이후 (20기)에는 전력가격>오일가격>석탄가격>천연가스가격의 순으로 나타났다.
Journal of the Korean Data and Information Science Society
/
제18권1호
/
pp.73-80
/
2007
Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.
본 논문에서는 벡터오차 확산법을 이용한 색수정 방법으로 장치간 색재현시 필연적으로 발생하는 색차를 줄이는 칼라 하프토닝(halftoning)법을 제안하였다 각 장치의 출력색을 추정하기 위하여 신경망을 이용하였으며 장치 특성화 과정의 평균 추정 오차를 정의하여 이를 색수정의 임계치로 정의하였다 즉 화소 단위로 색차를 비교하여 최대 허용 색차(임계치)보다 클 경우 그 화소의 프린팅을 위한 이진 도트 집합은 벡터 오차 확산법을 이용해 재배열된다 제안된 방법은 선택적으로 벡터 오차 확산법을 적용함으로써 기존의 벡더 오차 확산법이 갖는 스미어 현상(smear effect)을 줄일 수 있으며 색수정을 통하여 필연적으로 발생하는 장치간 색차를 줄일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.