• Title/Summary/Keyword: Vector Based Forwarding Protocol

Search Result 6, Processing Time 0.017 seconds

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

Load-Balancing and Fairness Support Mechanisms in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서의 부하 균등화 및 공평성 지원 방법)

  • Ahn Sanghyun;Yoo Younghwan;Lim Yujin
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.889-894
    • /
    • 2004
  • Most ad-hoc routing protocols such as AODV(Ad Hoc On-Demand Distance Vector) and DSR(Dynamic Source Routing) do not try to search for new routes if the network topology does not change. Hence, with low node mobility, traffic may be concentrated on several nodes, which results in long end-to-end delay due to congestion at the nodes. Furthermore, since some specific nodes are continuously used for long duration, their battery power may be rapidly exhausted. Expiration of nodes causes connections traversing the nodes to be disrupted and makes many routing requests be generated at the same time. Therefore, we propose a load balancing approach called Simple Load-balancing Approach (SLA), which resolves the traffic concentration problem by allowing each node to drop RREQ (Route Request Packet) or to give up packet forwarding depending on its own traffic load. Meanwhile, mobile nodes nay deliberately give up forwarding packets to save their own energy. To make nodes volunteer in packet forwarding. we also suggest a payment scheme called Protocol-Independent Fairness Algorithm (PIEA) for packet forwarding. To evaluate the performance of SLA, we compare two cases where AODV employs SLA or not. Simulation results show that SLA can distribute traffic load well and improve performance of entire ad-hoc networks.

SINR-Based Multipath Routing for Wireless Ad Hoc Networks

  • Park, Ji-Won;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.849-864
    • /
    • 2010
  • This paper proposes a multipath routing protocol called cross-layer multipath AODV (CM-AODV) for wireless ad hoc networks, which selects multiple routes on demand based on the signal-to-interference plus noise ratio (SINR) measured at the physical layer. Note that AODV (Ad hoc On-demand Distance Vector) is one of the most popular routing protocols for mobile ad hoc networks. Each time a route request (RREQ) message is forwarded hop by hop, each forwarding node updates the route quality which is defined as the minimum SINR of serialized links in a route and is contained in the RREQ header. While achieving robust packet delivery, the proposed CM-AODV is amenable to immediate implementation using existing technology by neither defining additional packet types nor increasing packet length. Compared to the conventional multipath version of AODV (which is called AOMDV), CM-AODV assigns the construction of multiple paths to the destination node and makes it algorithmically simple, resulting in the improved performance of packet delivery and the less overhead incurred at intermediate nodes. Our performance study shows that CM-AODV significantly outperforms AOMDV in terms of packet delivery ratio and average end-to-end delay, and results in less routing overhead.

An AODV-Based Two Hops Dynamic Route Maintenance in MANET (MANET에서의 AODV 기반 2홉 동적 경로유지 기법 연구)

  • Moon, Dae-Keun;Kim, Hag-Bae
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.191-198
    • /
    • 2007
  • A mobile ad-hoc network (MANET) is an autonomous, infrastructure-less system that consists of mobile nodes. In MANET, on demand routing protocols are usually used because network topology changes frequently. AODV, which is a representative on demand routing protocol, operates using the routing table of each node that includes next hop of a route for forwarding packets. It maintains the established route if there is not an expiration of route or any link break. In the paper, we propose a partially adaptive route maintenance scheme (AODV-PA) based on AODV, which provides dynamic route modification of initial route for selecting the effective route using not only next hop but also next-hop of next-hop (i.e. 2-hop next node) acquired through route discovery process. In addition, the proposed scheme additionally manages the routing table for preventing exceptional link breaks by route modification using HELLO messages. We use NS 2 for the computer simulation and validate that the proposed scheme is better than general AODV in terms of packet delivery ratio, latency, routing overhead.