• Title/Summary/Keyword: Vasoconstrictor

Search Result 52, Processing Time 0.028 seconds

Isolation of ACE Inhibiting Peptide from Thermolysin Hydrolysate of Manila clam, Ruditapes philippinarum Proteins

  • Lee, Tae-Gee;Yeum, Dong-Min;Kim, Jin-Soo;Kim, In-Soo;Kim, Seon-Bong
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.90-91
    • /
    • 2002
  • The angiotensin converting enzyme (ACE) generates the powerful vasoconstrictor angiotensin II by removing the C-terminal dipeptide from the precursor decapeptide angiotensin I (1). The enzyme also inactivates the vasodilator bradykinin (2). There have been many studies on ACE inhibitory substances as functional in food, and ACE inhibitory peptides were isolated (3-5). (omitted)

  • PDF

Homology Modelling of Urotension-2 Receptor (UTS2R): Potential Target for Human Pharmacotherapy

  • B, Sathya.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.185-189
    • /
    • 2016
  • Urotensin-2 receptor (UTS2R) is the most potent vasoconstrictor and plays a major role in the pathophysiology of various cardiovascular diseases and becomes a potential target for human pharmacotherapy. The crystal structure of Urotension-2 receptor has not yet been resolved. Hence, in the current study homology modelling of UTS2R was done utilizing the crystal structure of human delta opioid receptor as the template. Since the template has low sequence identity, we have incorporated both comparative modelling and threading approach to generate the three dimensional structure. 10 models were generated and validated. The reported models can be used to characterize the critical amino acid residues in the binding site of UTS2R.

A novel blood pressure modulator C1q/TNF-α-related protein 1 (CTRP1)

  • Han, Sora;Yang, Young
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.611-612
    • /
    • 2018
  • $C1q/TNF-{\alpha}-Related$ Protein 1 (CTRP1) has recently been shown to act as a blood pressure regulator, as it induces vasoconstriction. In the aorta, CTRP1 facilitates recruitment of angiotensin II receptor 1 (AT1R) to plasma membrane, through activation of the AKT/AS160 signaling pathway. This leads to activation of the Ras homolog gene family (Rho)/Rho kinase (ROCK) signaling pathway, resulting in vasoconstriction. Accordingly, mice overexpressing Ctrp1 have hypertensive phenotype. Patients with hypertension also display higher circulating CTRP1 levels, compared to healthy individuals, indicating that excessive CTRP1 may affect development of hypertension. Conversely, CTRP1 is regarded as an 'innate blood pressure modulator' because CTRP1 increases blood pressure under dehydration to prevent hypotension. Mice lacking Ctrp1 fail to maintain normotension under dehydration conditions, resulting in hypotension, suggesting that CTRP1 is an essential protein for maintaining blood pressure homeostasis. In conclusion, CTRP1 is a novel, anti-hypotensive vasoconstrictor that increases blood pressure during dehydration-induced hypotension.

Effect of Treatment with Desmopressin Acetate to Reduce Blood Loss after Cardiac Surgery (개심술후 Desmopressin Acetate 가 출혈에 미치는 영향)

  • Yu, Jae-Hyeon;Lee, Young
    • Journal of Chest Surgery
    • /
    • v.23 no.2
    • /
    • pp.268-274
    • /
    • 1990
  • Bleeding after cardiopulmonary bypass remains a cause for concern, requiring reexploration of the chest in approximately 3 percent of patients who have had operations on the heart. We examined the possibility that this problem might be alleviated by desmopressin acetate [DDAVP], synthetic vasopressin analogue that lacks vasoconstrictor activity. In a prospective, randomized trial, we studied the effect of intraoperative desmopressin acetate in 20 patients [the treated group 10 patients and the control group 10 patients] undergoing various cardiac operations requiring cardiopulmonary bypass. The result showed that the early postoperative [during first 24hrs] and mean postoperative blood loss [first 3 days] of the treated group were significantly reduced than the control group[447\ulcorner199ml in the treated group versus 746\ulcorner199ml in the treated group versus 746\ulcorner295 ml in the control group, p=0.014; mean\ulcornerstandard deviation and 675\ulcorner276 ml in the treated group versus 1006\ulcorner303 ml in control group, p=0.019]. The mean red-cell transfusion in first 3days were reduced in the treated group than the control group [3.3\ulcorner1.7 units vs 4.9\ulcorner1.7units, P=0.051]. There were no untoward side effects of desmopressin acetate. We conclude that the administration of desmopressin acetate can be recommended to reduce blood loss and blood conservation in patients undergoing cardiac operations.

  • PDF

Expression and Purification of an ACE-Inhibitory Peptide Multimer from Synthetic DNA in Escherichia coli

  • OH, KWANG-SEOK;YONG-SUNG PARK;HA-CHIN SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • An angiotensin I-converting enzyme (EC 3.4.15.1) (ACE), which can convert inactive angiotensin I into angiotensin II, a vasoconstrictor, is one of the key enzymes in controlling hypertension. It is suggested that the inhibition of ACE prevents hypertension, and many inhibitory peptides have already been reported. In the current study, oligonucleotides encoding ACE inhibitory peptides (IY, VKY) were chemically synthesized and designed to be multimerised due to isoschizomer sites (BamHI, BglII). The cloned gene named AP3 was multimerised up to 6 times in pBluescript and expressed in BL2l containing pGEX-KG. The fusion protein (GST-AP3) was easily purified with a high recovery by an affinity resin, yielding 38 mg of synthetic AP3 from a 1-1 culture. The digestion of AP3 by chymotrypsin exhibited an $IC_50$ value of $18.53{\mu}M$. In conclusion, the present experiment indicated that AP3 could be used as a dietary antihypertensive drug, since the potent ACE inhibitory activity of AP3 could be activated by chymotrypsin in human intestine.

The Effect of Eicosanoid Analogues on the Change to Blood Pressure in Rat (Eicosanoid 유도체가 흰쥐 혈압 변화에 미치는 영향)

  • 윤재순;윤연숙;신정희;최현진;최진아
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.104-110
    • /
    • 1995
  • Arachidonic acid (AA, C20 : 4, $\omega$-6) and eicosapentanoic acid (EPA,C20 : 5, $\omega$-3), which are polyunsaturated fatty acids forming eicosanoids, were tested for their effects on blood pressure in Wistar rats and SHR. AA is the most important precursor for the biosynthesis of eicosanoids which include the prostaglandins, prostacyclin (PGI$_2$), thromboxane $A_2$ (TXA$_2$) and the leukotriens. TXA$_2$is a potent vasoconstrictor and a powerful inducer of platelet aggregation causing myocardial infarction and hypertention. In contrast, PGI$_2$ induces vasodilation and inhibits platelet aggregation. In this study, AA markedly increased blood pressure, but its effect was antagonized by both EPA, a structural analog of AA, and dazmegrel, a TX synthetase inhibitor. Also, AA enhanced the antihypertensive effects of hydralazine and captopril, and EPA reduced TXA$_2$ production. These results indicate that the hypotensive effects of EPA might be closely related to the decrease in TXA$_2$ biosynthesis due to competitive inhibition by structural similarity of the EPA to the AA, the precursor of TXA$_2$.

  • PDF

Effect of Caffeine on Coronary Circulation and Calcium Release in Isolated Guinea Pig Hearts (Guinea Pig Heart의 관상동맥 순환기능과 Calcium Release에 있어서 Caffeine이 미치는 영향)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • v.25 no.7
    • /
    • pp.597-607
    • /
    • 1992
  • The present study examined effects of caffeine on coronary circulation myocardial oxygen me-tabolism and calcium release in isolated perfused guinea pig hearts. Intracoronary caffeine({{{{ {10 }^{-5 } }}}}∼{{{{ { 10}^{-3 } }}}}M) was employed for 10 minutes to measure coronary perfusate flow(CF) and coronary vascular sresistance(CVR) at a constant coronary perfusion pressure of 80 cmH2O Perfusate myocardial oxygen consumption(MVO2) and percent oxygen extraction(%EC2) were calcula-ted. In addition calcium contents in both perfusate samples were measured to calculate calcium release in coronary venous effluent. Caffeine significantly decreased CF and increased CVR during 10 minutes of caffeine perfusion regardless of dose of caffeine perfused exhibiting time-response. While % EO2 was significantly enhanced with caffeine MVO2 was markedly reduced. The coronary venous perfusate pH dcreased during the perfusion with caffeine. These changes were consistent with caffeine-induced metabolic acidosis. Calcium release appeared to be dose-dependent and high dose of caffeine greatly increased venous calcium release even 2 minutes after perfusion with carffeine. These finding in dicate that caffeine produced coronary vasoconst-riction with increased calcium release in isolated perfused guinea pig hearts. Additionaly this vasoconstrictor response mignt be due tin part to the direct actions of caffeine.

  • PDF

Effects of Lipopolysaccharide-Induced Heme Oxygenase and Carbon Monoxide Production on the Aortic Contractility (Lipopolysaccharide에 의한 Heme Oxygenase Induction과 Carbon Monoxide생성이 혈관수축력에 미치는 영향)

  • 장우성;손의동;이석용
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • Heme oxygenase is a rate-limiting enzyme in heme catabolism that cleaves heme to form biliverdin, iron, and carbon monoxide. Heme oxygenase-1 is expressed in many types of cells and tissues and is highly induced in response to oxidative stress. Carbon monoxide, one of the products of heme oxygenase, can stimulate soluble guanylate cyclase and dilate the vascular smooth muscle. So, the induction of heme oxygenase by lipopolysaccharide (LPS)-induced oxydative stress and the effect of the resultant carbon monoxide on aortic contractility were examined in this study. Zinc protoporphyrine IX (ZnPP), a inhibitor of heme oxygenase, elicited weak contraction of thoracic aortic ring, and this effect was more potent in aorta of LPS-treated rats than control and was blocked by methylene blue. The hyperreactivity to ZnPP in LPS-treated group was blocked by co-treatment with aminoguanidine. In the aortic ring of LPS-treated rats, ZnPP didn't change the vasoreactivity to phenylephrine or acetylcholine. ZnPP elicited hyper-tensive effect in concious rats, and pretreatment with LPS did not affect this effect. Prazosin significantly diminished the hypertensive effect of ZnPP. These results indicate that LPS induced heme oxygenase in aotra, and the resultant carbon monoxide diminished the aortic reactivity to vasoconstrictor.

  • PDF

Cardiovascular effect of epinephrine in endodontic microsurgery: a review

  • Jang, Youngjune;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.187-193
    • /
    • 2013
  • Epinephrine is one of the most widely-used vasoconstrictors in dental treatment including endodontic microsurgery. However, the systemic safety of epinephrine has been in debate for many years because of its potential risk to cause cardiovascular complications. The purpose of this review was to assess the cardiovascular effect of epinephrine use in endodontic microsurgery. Endodontic microsurgery directly applies epinephrine into the bone cavity, and the amount is reported to be much larger than other dental surgeries. Moreover, when considering that systemic potency of intraosseous application is reported to be comparable to intravenous application, the systemic influence of epinephrine could be increased in endodontic microsurgery. Besides, pre-existing cardiovascular complications or drug interactions can enhance its systemic influence, resulting in increased susceptibility to cardiovascular complications. Although clinical studies have not reported significant complications for patients without severe systemic complications, many epinephrine-induced emergency cases are warning the cardiovascular risk related with pre-existing systemic disease or drug interactions. Epinephrine is a dose-sensitive drug, and its hypersensitivity reaction can be fatal to patients when it is related to cardiovascular complications. Therefore, clinicians should recognize the risk, and the usage of pre-operative patient evaluation, dose control and patient monitoring are required to ensure patient's safety during endodontic microsurgery.

The Role of Endothelin-1 in Obstructive Sleep Apnea Syndrome and Pulmonary Hypertension (폐쇄성 수면 무호흡 증후군과 폐동맥 고혈압에서 엔도텔린-1의 역할)

  • Choi, Young-Mi
    • Sleep Medicine and Psychophysiology
    • /
    • v.17 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Obstructive sleep apnea syndrome is associated with significant cardiovascular morbidity and increased mortality. However, it was controversial whether obstructive sleep apnea syndrome could cause pulmonary hypertension. The controversy was resolved by several studies that have shown pulmonary hypertension in 20% to 40% of patients with obstructive sleep apnea syndrome without underlying other cardiopulmonary diseases and reductions in pulmonary arterial pressure in patients with obstructive sleep apnea syndrome after treatment with nocturnal continuous positive airway pressure. Recent studies provide strong evidence for endothelial dysfunction in obstructive sleep apnea syndrome and pulmonary hypertension. Endothelin-1 is a 21 amino acid peptide with diverse biologic activity such as highly potent vasoconstrictor and mitogen regulator that may play a key role in obstructive sleep ap-nea syndrome and pulmonary hypertension. Continuous positive airway pressure therapy is moderately effective in reducing pulmonary arterial pressure. Further researches are needed to assess the therapeutic efficacy of pharmacologic therapy with agents that inhibit the action of endothelin-1 in obstructive sleep apnea syndrome patients with pulmonary hypertension.

  • PDF