• 제목/요약/키워드: Vascular model

검색결과 412건 처리시간 0.032초

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

Cuff Technique for Small-Diameter Vascular Grafts in the Systemic Arterial Circulation of the Rat

  • Cho, Sukki;Song, In Hag
    • Journal of Chest Surgery
    • /
    • 제51권6호
    • /
    • pp.423-426
    • /
    • 2018
  • This study determined the feasibility of the cuff technique for small-caliber vascular grafts in a rat model. A graft was implanted with the cuff technique or suture technique in a 1-cm segment of the abdominal aorta in 12 rats. The mean aortic clamp time was 29 minutes with the cuff technique and 44 minutes with the suture technique; the cuff technique was significantly shorter. Abdominal angiography at 1 week after implantation showed no significant stenosis in 9 rats, focal stenosis of the mid-portion of the graft in 1 rat with each technique, and total occlusion of the graft in 1 rat with the suture technique. We have successfully used the cuff technique for anastomosis for small-caliber vascular grafts in an animal model.

Pharmacological Effects of Mungbean Trypsin Inhibitor (MBTI) and MBTI-polymer Conjugate (Mungbean Trypsin Inhibitor(MBTI) 및 MBTI-polymer 포합체의 약물학적 특성)

  • 김상율;신영희
    • YAKHAK HOEJI
    • /
    • 제48권1호
    • /
    • pp.82-87
    • /
    • 2004
  • Mungbean trypsin inhibitor (MBTI) was isolated and purified from Mung bean which has been used as a galenic and traditional food. MBTI and poly(ethylene glycol) were conjugated by using water soluble carbodiimide. We evaluated the therapeutic value of the MBTI and MBTI-PEG conjugate using animal models, sublethal septic shock model in guinea pig caused by pseudomonal elastase, shock model in rat caused by lipopolysaccharide, and the vascular permeability test by using pseudomonal elastase. In two shock model in guinea p Is and in rat, hypotesion shock was inhibited by pretreatment of MBTI. And also the vascular permeability caused by pseudomonal elastase reduced by pretreatment of MBTI. Also, therapeutic value of the MBTI-PEG conjugate was evaluated by using the sublethal septic shock model caused by pseudomonal elastase. The MBTI-PEG conjugate was more effective than native MBTI against pseudomonal elastase induced septic shock in guinea pig model.

Neuromedin B modulates phosphate-induced vascular calcification

  • Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yeon;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.569-574
    • /
    • 2021
  • Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.

Development of Animal Model for Diabetes and Hyperlipidemia (당뇨병-고지혈증 모델동물의 개발)

  • Oh Seung Hyun;Roh Kyung-Jin;Park In-Sun;Min Bon Hong;Doo Ho-Kyung;Ahn Se Young;Kim Yong Suk;Seong Je Kyung
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.287-294
    • /
    • 2004
  • Diabetic complication is one of major risk factors leading to vascular disease such as atherosclerosis, stroke, coronary heart disease and etc. Several factors affecting the acceleration of diabetic vascular complication have been known such as hypertension, hyperlipidemia, immune complex and genetic factors. To screen and develop new therapeutics agents for diabetic vascular complication, it is strongly needed to develop animal models for diabetic complications. However in rodents models, diabetic complications is not well developed. Furthermore to assess the possibility of new therapeutics for diabetic vascular complications, diabetic animal models which have the risk factors of diabetic complications is needed. We aim to develop and establish an diabetic animal model which have diabetic complications with hyperlipidemia which is one of risk factors for diabetic complications. We induced insulin -dependent diabetes by intra. venous injection of streptozotocin (35 mg/kg/day) in RICO rats which is a spontaneous animal model for hyperlipidemia. Our models (STZ RICO) showed hyperglycemia, persistent high level of plasma cholesterol and triglyceridemia with severe diabetic renal changes until 28 weeks after induction of diabetes. STZ-RICO rats could be used for the evaluations of newly developed diabetic drugs.

Hesperetin Inhibits Vascular Formation by Suppressing of the PI3K/AKT, ERK, and p38 MAPK Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.299-306
    • /
    • 2014
  • Hesperetin has been shown to possess a potential anti-angiogenic effect, including vascular formation by endothelial cells. However, the mechanisms underlying the potential anti-angiogenic activity of hesperetin are not fully understood. In the present study, we evaluated whether hesperetin has anti-angiogenic effects in human umbilical vascular endothelial cells (HUVECs). HUVECs were treated with 50 ng/mL vascular endothelial growth factor (VEGF) to induce proliferation as well as vascular formation, followed by treatment with several doses of hesperetin (25, 50, and $100{\mu}M$) for 24 h. Cell proliferation and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. In addition, cell signaling related to cell proliferation and vascular formation was analyzed by western blot. Furthermore, a mouse aorta ring assay was performed to confirm the effect of hesperetin on vascular formation. Hesperetin treatment did not cause differences in HUVECs proliferation. However, hesperetin significantly inhibited VEGF-induced cell migration and tube formation of HUVECs (P<0.05). Moreover, hesperetin suppressed the expression of ERK, p38 MAPK, and PI3K/AKT in the VEGF-induced HUVECs. In an ex vivo model, hesperetin also suppressed microvessel sprouting of mouse aortic rings. Taken together, the findings suggest that hesperetin inhibited vascular formation by endothelial cells via the inhibition of the PI3K/AKT, ERK and p38 MAPK signaling.

The Iliac Fossa Transplant as an Acute Rejection Model in Porcine Kidney Transplantation: a Tool for the Safety Study of the Stem Cell- induced Humanized Tissue (돼지 장기이식에서 급성거부반응 연구에 효과적인 엉덩오목이식 동물모델: 줄기세포유래 Humanized 조직의 안전성 평가모델)

  • Kwak, Ho-Hyun;Nam, Hyun-Suk;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2011
  • To consider the iliac fossa as the vascular anastomosis site of kidney transplantation for the short-term study of acute rejection in pigs. Twelve domestic pigs weighing 39~48 kg underwent heterotopic renal allgraft transplantation. The experimental animals were divided into 2 groups in terms of renal vascular anastomosis site; the external iliac artery and vein were used in iliac fossa model (n = 6), the abdominal aorta and the caudal vena cava inferior to the kidney were used in abdominal cavity model (n = 6). Renal function was evaluated by daily measurement of plasma creatinine and BUN concentrations. The experiments' health including postoperative complications was also assessed daily for 8 days after transplantation. After euthanazation gross and histopathologic analysis was performed. All six pigs in iliac fossa model developed neuropraxia and lameness of the ipsilateral pelvic limb. However, no necrosis was observed in any pigs. In the abdominal cavity model, durations of both the surgical operation and the vascular anastomosis were significantly longer than those in the iliac fossa model. Furthermore, ischemia injury of the transplanted kidney was increased in abdominal cavity model, which induced accelerated-acute immune response from day 4 after transplantation. Despite of pelvic limb complication, the iliac fossa model showed more advantages including not only less ischemia time related to easy vascular anastomosis, but also less immune response during the acute rejection period. The results indicate that the iliac fossa model may be appropriate to the study of acute rejection in porcine kidney transplantation.

Correlation of Microvessel Density with Nuclear Pleomorphism, Mitotic Count and Vascular Invasion in Breast and Prostate Cancers at Preclinical and Clinical Levels

  • Muhammadnejad, Samad;Muhammadnejad, Ahad;Haddadi, Mahnaz;Oghabian, Mohammad-Ali;Mohagheghi, Mohammad-Ali;Tirgari, Farrokh;Sadeghi-Fazel, Fariba;Amanpour, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.63-68
    • /
    • 2013
  • Background: Tumor angiogenesis correlates with recurrence and appears to be a prognostic factor for both breast and prostate cancers. In the present study, we aimed to investigate the correlation of microvessel density (MVD), a measure of angiogenesis, with nuclear pleomorphism, mitotic count, and vascular invasion in breast and prostate cancers at preclinical and clinical levels. Methods: Samples from xenograft tumors of luminal B breast cancer and prostate adenocarcinoma, established by BT-474 and PC-3 cell lines, respectively, and commensurate human paraffin-embedded blocks were obtained. To determine MVD, specimens were immunostained for CD-34. Nuclear pleomorphism, mitotic count, and vascular invasion were determined using hematoxylin and eosin (H&E)-stained slides. Results: MVD showed significant correlations with nuclear pleomorphism (r=0.68, P=0.03) and vascular invasion (r=0.77, P=0.009) in breast cancer. In prostate cancer, MVD was significantly correlated with nuclear pleomorphism (r=0.75, P=0.013) and mitotic count (r=0.75, P=0.012). In the breast cancer xenograft model, a significant correlation was observed between MVD and vascular invasion (r=0.87, P=0.011). In the prostate cancer xenograft model, MVD was significantly correlated with all three parameters (nuclear pleomorphism, r=0.95, P=0.001; mitotic count, r=0.91, P=0.001; and vascular invasion, r=0.79, P=0.017; respectively). Conclusions: Our results demonstrate that MVD is correlated with nuclear pleomorphism, mitotic count, and vascular invasion at both preclinical and clinical levels. This study therefore supports the predictive value of MVD in breast and prostate cancers.

Experimental Study on the Cannabis Fructus on Exercise Capacity and Cognitive Function in Vascular Dementia Rat Model (마자인(麻子仁)이 치매병태모델의 운동과 인지기능에 미치는 실험적 연구)

  • Bae, Kil-Joon;Song, Min-Yeong;Choi, Jin-Bong;Kim, Seon-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • 제25권1호
    • /
    • pp.1-15
    • /
    • 2015
  • Objectives The aim of this study was to investigate the effects of Cannabis Fructus on exercise capacity and cognitive function in chronic hypoperfusion induced vascular dementia rat model. Methods Vascular dementia rat models were induced by chronic cerebral hypoperfusion through bilateral common carotid arteries occlusion (BCCAO). All rats were randomly divided into 4 groups: normal group; control group; CF I group (feeding Cannabis Fructus 100 mg/kg); CF II group (feeding Cannabis Fructus 300 mg/kg). In order to study the effects of oral administration of Cannabis Fructus on vascular dementia rat models, corner turn test, hole board test, radial arm maze test, passive avoidance test were taken and Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, serum of Vascular endothelial growth factor (VEGF) protein level were measured. Also histological findings of the liver, kidney, brain and the change of Tau immunoreactive neurons in hippocampus were observed. Results CF I and CF II showed significant improvement in corner turn test, hole board test, radial arm maze test, passive avoidance test, Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, the serum of Vascular endothelial growth factor (VEGF) protein level and the change of Tau immunoreactive neurons in hippocampus. CF I showed more significant effect than CF II in these tests. However in histological observations of the liver and kidney both CF I and CF II showed glomerular injury and hepatotoxicity. Conclusions These results suggest that Cannabis Fructus was helpful in improving exercise capacity and cognitive function on Chronic hypoperfusion induced Vascular Dementia rats. However Cannabis Fructus affects the liver and kidney, therefore suggest that this is an area for further study.