• Title/Summary/Keyword: Vascular circulation

Search Result 217, Processing Time 0.016 seconds

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF