• Title/Summary/Keyword: Varying Time-Delay

Search Result 312, Processing Time 0.036 seconds

The Effect of Radiation Therapy on the Healing Ability of Subsequent Surgical Wounds (방사선조사가 피부의 창상치유에 미치는 실험적 연구)

  • Suh, Hyun-Suk;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.17-25
    • /
    • 1991
  • This study was undertaken to find the effect of radiation therapy on the healing ability of surgical wounds and on this basis, to find the proper time interval between the radiation therapy and surgery. Two hundred and fifty-two mice were used and a single dose of 2000 cGy was given in each instances to the hind limb of mice. Incisional wounds were produced after varying intervals in the previously irradiated areas and then they were followed up at regular intervals by the measurement of tensile strength. The wounds which received surgery immediately, 1 or 2 weeks after irradiation revealed marked delay and the wounds which received surgery 12, 16 or 20 weeks after irradiation demonstrated slight delay in wound healing in terms of tensile strength measurement. But the wounds which received irradiation 4 or 8 weeks before surgery did not differ much in the wound healing process from that of the control group. Histopathologic studies of the wounds demonstrated epithelization in most instances as quickly as in the control wounds. The appearance of fibroblasts and collagen fibers has delayed momently and appeared to have close correlation with the tensile strength healing curves.

  • PDF

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Measuring and Generation the speed of reaction wheel for Spacecraft Dynamic Simulator using the T-Method (위성동역학 시뮬레이터용 T-방식을 이용한 반작용휠 속도 측정 및 펄스 생성)

  • Kim, Yong-Bok;Oh, Si-Hwan;Lee, Seon-Ho;Yong, Ki-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.74-82
    • /
    • 2007
  • The M-Method that measures the speed of actuator with counting the number of Reaction wheel Tacho Pulse has the many advantages such that a realization is simple and measuring time is uniform, but it also has the disadvantage that measuring speed becomes worse as the wheel speed goes lower. On the contrary, the T-Method that measures the time duration between the pulses is more accurate at lower-speed and its time delay is smaller than M-Method, but its realization is more difficult than M-Method because measuring time is varying with wheel speed variation. Thought M/T Method mixing M-Method with T-Method is widely used in order to measure the speed in the motor industrial area, one of two methods has been used in the spacecraft design area. Therefore, we try to apply both methods together to measuring the speed of Reaction Wheel, the core actuator for low earth orbit satellite. This paper provides the Reaction Wheel simulation board located in the Spacecraft Dynamic Simulator, ground support test set.

  • PDF

Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions (맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향)

  • 최주환;이종선;김찬중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • The present study investigated flow dynamics of a straight elastic blood vessel under sinusoidal flow conditions in order to understand influence of wall motion and impedance phase angle(time delay between pressure and flow waveforms) on wall shear stress distribution using computational fluid dynamics. For the straight elastic tube model considered in the our method of computation. The results showed that wall motion induced additional terms in the axial velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. Te trend of the changes was very different depending on the impedance phase angle. As the wall shear stress increased. As the phase angle was reduced from 0$^{\circ}$to -90$^{\circ}$for ${\pm}$4% wall motion case, the mean wall shear stress decreased by 10.5% and the amplitude of wasll shear stress increased by 17.5%. Therefore, for hypertensive patients vulnerable state to atherosclerosis according to low and oscillatory shear stress theory.

  • PDF

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

An Analysis and Assessment of Diagnostic and Therapeutic Process in Some Frequent Admissions and Operations (일부 다빈도 입원 및 수술례의 진단과 치료과정에 대한 연구)

  • Kim, Chang-Yup;Kim, Yoon;Kwon, Young-Dae;Kim, Yong-Ik;Shin, Young-Soo;Ahn, Hyeong-Sik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.3 s.43
    • /
    • pp.400-411
    • /
    • 1993
  • The aim of this study is to analyze the variations among hospitals and hospital groups in resource use and procedures of diagnostic and therapeutic process, such as laboratory tests, radiologic examinations, tissue diagnosis, timing of surgery after admission, the time required for operation. The study was performed for five procedures including cesarean section (C/S), appendectomy, cholecystectomy, cataract extraction, and pediatric pneumonia. The 2,316 subjects were selected from medical insurance claims list, and from this list 413 cases were sampled for medical record review. The patterns of resource utilization and process of treatment were described according to hospitals and characteristics of hospital groups. The major results were as follows : 1. The numbers of laboratory and radiologic tests showed significant difference among hospitals and hospital groups. In case of hospital groups, we could find tendencies of more tests with increasing hospital bed size. 2. In general, the proportion of operative cases evaluated by tissue diagnosis postoperatively among all operations ranged from 28.3% to 100%. The proportion varied among hospital groups, of which general hospital A group(more than 15 specialty) showed the highest proportion. 3. Post-admission delay until operation and the time required for operative procedure were not invariable among hospitals and hospital groups. The duration of operation in tertiary hospitals was slightly shorter than general hospitals, with varying statistical significance. We could find that probably there were differences of quality among hospitals in some components of procedures, which suggested that the implementation of quality assurance activities would be mandatory. In this study, we simply described the patterns of resource utilization and some features of clinical process, with institution of the need for advanced studies with in-depth analyses for each component of diagnosis and treatment procedures.

  • PDF

Analysis of the Spent Fuel Cooling Time for a Deep Geological Disposal (심지층 처분을 일한 사용후핵연료 냉각기간 분석)

  • Lee, Jong-Youl;Cho, Dong-Geun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The purpose of the HLW deep geological disposal is to isolate and to delay the radioactive material release to human beings and the environment for a long time so that the toxicity does not affect to the environment. The main requirements for the HLW repository design is to keep the buffer temperature below $100\;^{\circ}C$ in order to maintain its integrity. So the cooling time of spent fuels discharged from the nuclear power plant is the key consideration factors for efficiency and economic feasibility of the repository. The disposal tunnel/disposal hole spacing, the disposal area and thermal capacity required for the deep geological repository layout which satisfies the temperature requirement of the disposal system is analyzed to set the optimized spent fuels cooling time. To do this, based on the reference disposal concept, thermal stability analyses of the disposal system have been performed and the derived results have been compared by setting the spent fuels cooling time and the disposal tunnel/disposal hole spacing in various ways. From these results, desirable spent fuels cooling time in view of disposal area is derived. The results shows that the time reaching the maximum temperature within the design limit of the temperature in the disposal site is likely shortened as the cooling time of spent fuels becomes short. Also it seems that the temperature-rising and-dropping patterns in the disposal site are of smoothly varying form as the cooling time of spent fuels becomes long. In addition, it is revealed that a desirable cooling time of spent fuels is approximately 40-50 years when spent fuels are supposedly disposed in the deep geological disposal site with its structural scale under consideration in this study.

  • PDF

Comparison of Predicted and Measured ASF (ASF 예측치와 실측치 비교)

  • Shin, Mi-Young;Hwang, Sang-Wook;Yu, Dong-Hui;Park, Chan-Sik;Lee, Chang-Bok;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • In the almost application parts, GNSS being used the primary navigation system on world-widely. However, some of nations attempt or deliberate to enhance current Loran system, as a backup to satellite navigation system because of the vulnerability to the disturbance signal. Loran interests in supplemental navigation system by the development and enhancement, which is called eLoran, and that consists of advancement of receiver and transmitter and of differential Loran in order to increase the accuracy of current Loran-C. A significant factor limiting the ranging accuracy of the eLoran signal is the ASF in the TOAs observed by the receiver. The ASF is mostly due to the fact that the ground-wave signal is likely to propagate over paths of varying conductivity and topography. This paper presents comparison results between the predicted ASF and the measured ASF in a southern east region of Korea. For predicting ASF, the Monteath model is used. Actual ASF is measured from the legacy Loran signal transmitted Pohang station in the GRI 9930 chain. The test results showed the repeatability of the measured ASF and the consistent characteristics between the predicted and the measured ASF values.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Performance Analysis of Adaptive SC/MRC Diversity Combining using in AWGN (AWGN환경에서 적응형 SC/MRC 다이버시티 컴바이너 성능분석)

  • Yun, Deok-Won;Huh, Sung-Uk;Kim, Chun-Won;Choi, Yong-Tae;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.757-763
    • /
    • 2018
  • It is very difficult to achieve sufficient data rate and required quality of service due to the time-varying nature of the radio channel and various jammers such as path loss, delay, Doppler, shadowing and interference. Especially, the propagation path between the transmitting antenna and the tracking antenna mounted on the fuselage during the test and evaluation of the projectile system considered in this paper is based on the rapid movement of the projectile, the interference due to multipath fading due to the terrain, The propagation path may be blocked. In order to effectively improve the multipath fading occurring in the wireless communication system, a diversity combiner technique is required. In this paper, to derive the design and improvement schemes for the space diversity combiner technique among the diversity combiner schemes, the BER performance of maximum ratio combining (MRC) and selection combining (SC) In an adaptive SC / MRC diversity combiner that operates with MRC when it is lower than the specified threshold criterion when comparing the SNR between two signals received from the channel and operates with SC at high and combines the two received signals The BER performance of the system was compared and analyzed.