• Title/Summary/Keyword: Various capacity

Search Result 4,518, Processing Time 0.033 seconds

A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results (수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구)

  • Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.7-22
    • /
    • 2021
  • In this study, inverse analysis was performed on the bi-directional axial compressive load test conducted on drilled shafts. And the bearing capacities were analyzed by numerical analysis of various pile tip ground conditions of silt clay, silt sand, sand silt, sand gravel, weathered rock, and soft rock. The bearing capacities were analyzed using the P-S method, the Davisson method, and the allowable sttlement of 25.4 mm. The minimum allowable bearing capacities analyzed by three methods were found to be 19.64 MN ~ 24.96 MN. At this time, the base resistances were sharing a 2% ~ 12% of a head load, shaft resistance were shared 88% ~ 98% of the head load. The greater the strength of pile tip was found to increase the allowable bearing capacity. However, the difference between the maximum allowable bearing capacity and the minimum allowable bearing capacity was 5.32 MN, and the increase in the allowable bearing capacity was only 27% depending on the pile tip.

The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2001
  • The uplift capacity of a pile for improving the wind resistance of the 1-2 W type plastic film pipe on greenhouses was tested using the plane and corrugated piles with various shapes and diameters. First, the resistant uplift capacity was measured by using the uplift loading on plane piles. As the uplift loading on plane piles increased, the resistant uplift capacity also increased until the loading was reached to ultimate uplift capacity. After ultimate uplift capacity was appeared the uplift displacement, the uplift capacity was decreased gradually. Secondly, the resistant uplift capacity was measured by using the uplift loading on corrugated piles. After the uplift capacity was reached the uplift displacement, the uplift capacity was continually increased or decreased. In general, the ultimate uplift capacity was independent of pile shapes, pile diameter length, and embedded pipe depth. However, the ultimate uplift capacity of a corrugated pile was twice more than that of a plane pile without regard to its diameter and embedded depth. The ultimate uplift capacity per unit pile area was increasing in deeper embedded depth. However, the longer a pile diameter was, the less ultimate uplift capacity. The uplift capacity of a plane pile, used in conjunction with the design wind velocity (26.9m.s$^{-1}$ ) of the project area, was unsatisfiable without regard to diameters and embedded depths of piles, while most of corrugated piles were well appeared uplift capacity under various experimental conditions.

  • PDF

Estimation of Optimum Tug Capacity for VLCC and Its Application to VLCC Terminal in Gwang-Yang Harbor

  • Gong, In-Young;Lee, Chang-Min;Yang, Chan-Su;Lee, Han-Jin
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.609-617
    • /
    • 2004
  • The total tug capacity needed for berthing/unberthing operations of a ship may vary depending on the ship's type, size, loading conditions, and environmental circumstances. Traditionally, total tug capacity is determined based on the local guidelines of port authorities or on the rule of thumb. However, the social demands for the enhancement of ship safety at harbor and the economical demands for the cost-effectiveness of tug usage makes it necessary for port authorities to develop more reasonable and detailed guidelines on tug usage which takes various conditions into account. In this paper, the method to estimate the optimum tug capacity of VLCC is suggested by considering various ship conditions such as its size, loading conditions, and environmental circumstances including wind, wave, tidal currents, and geographical characteristics of a terminal. This method is applied to the VLCC terminal located in Gwang-Yang harbor of Korea and the results are compared with the local guidelines of the harbor, which shows that there may be a room for the amendment of local guidelines on tug usage.

Estimation of Optimum Tug Capacity for VLCC and Its Application to VLCC Terminal in Gwang-Yang Harbor

  • In-Yong GONG;Lee, Chang-Min;Chan-Su-YANG;Lee, Han-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.3-13
    • /
    • 2004
  • The total tug capacity needed for berthing/de-berthing operations of a ship may vary depending on the ship type, size, loading conditions, and environmental circumstances. Traditionally, total tug capacity is determined based on the local guidelines of port authorities or on the rule of thumb. However, the social demands for the enhancement of ship safety at harbor and the economical demands for the cost-effectiveness of tug usage makes it necessary for port authorities to develop more reasonable and detailed guidelines on tug usage which takes various conditions into account. In this paper, the method to estimate the optimum tug capacity of VLCC is suggested by considering various ship conditions such as its size, loading conditions, and environmental circumstances such as wind, wave, tidal currents, and geographical characteristics of a terminal. This method is applied to a VLCC terminal located in Gwang-Yang Harbor of Korea and the results are compared with the local guidelines of the harbor, which shows that there may be a room for the amendment of local guidelines on tug usage.

  • PDF

MIMO Capacity, Level Crossing Rates and Fades: The Impact of Spatial/Temporal Channel Correlation

  • Giorgetti, Andrea;Smith, Peter J.;Shafi, Mansoor;Chiani, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.104-115
    • /
    • 2003
  • It is well known that Multiple Input Multiple Output (MIMO) systems offer the promise of achieving very high spectrum efficiencies (many tens of bit/s/Hz) in a mobile environment. The gains in MIMO capacity are sensitive to the presence of spatial and temporal correlation introduced by the radio environment. In this paper, we examine how MIMO capacity is influenced by a number of factors e.g., a) temporal correlation b) various combinations of low/high spatial correlations at either end, c) combined spatial and temporal correlations. In all cases, we compare the channel capacity that would be achievable under independent fading. We investigate the behaviour of "capacity fades," examine how often the capacity experiences the fades, develop a method to determine level crossing rates and average fade durations and relate these to antenna numbers. We also evaluate the influence of channel correlation on the capacity autocorrelation and assess the fit of a Gaussian random process to the temporal capacity sequence. Finally we note that the particular spatial correlation structure of the MIMO channel is influenced by a large number of factors. For simplicity, it is desirable to use a single overall correlation measure which parameterizes the effect of correlation on capacity. We verify this single parameter concept by simulating a large number of different spatially correlated channels.

A Methodology for Estimating Optimum Hardware Capacity E-learning System Development (E-러닝시스템 구축 프로젝트의 적정 하드웨어 산정방법론 연구)

  • Jung, Ji-Young;Baek, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Estimating optimum hardware capacity of an e-learning system is very important process to grasp reasonable size of designing technique architecture and budget during step of ISP(information strategic planning) and development. It hugely influences cost and quality of the whole project. While investment on information system hardware has been continuously increased, there was no certified hardware capacity estimating method in e-learning system development. A guideline for hardware sizing of information systems was established by Telecommunication Technology Association in 2008. However, the guideline is not appropriate for estimating optimum hardware capacity of an e-learning system because it was designed to provide general standards for estimating hardware capacity of various types of projects. The purpose of this paper is to provide a methodology for estimating optimum hardware capacity in e-learning system development. To develop the methodology, this study, first of all, analyzes two e-learning development projects, in which the guideline was applied to estimate optimum hardware capacity. Then, this study finds out several key factors influencing on hardware capacity. Finally, this study suggests a methodology for estimating optimum hardware capacity of an e-learning system, in which weights for the factors are determined through AHP analysis.

A Study on Improvement of Capacity Payment using Fuzzy Theory in CBP Market (퍼지이론을 활용한 변동비 반영 전력시장의 용량요금 개선방안에 관한 연구)

  • Kim, Jong-Hyuk;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1087-1092
    • /
    • 2009
  • This paper presents a method for improvement of capacity payment in CBP(cost based pool) market. Capacity payments have been used as common mechanisms in various pools for compensating generators recognized to serve a for reliability purpose. Ideal pricing for capacity reserves by definition achieves a balance between economic efficiency and investment incentives. That is, prices must be kept close to costs, but not so low as to discourage investment. However, the price set is not easy. This paper concludes with market design recommendations that apply fuzzy theory for improvement of capacity payment. Following this model, market participants decided on their own based on their forecast to the market demand and the payment for it.

Uplift Capacity of Earth Anchor in Sand - Study on the windproof characteristics of a Greenhouse - (어스앵커의 인발저항력 - 온실의 내풍성에 관한 연구 -)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Yang, Young-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.125-128
    • /
    • 2002
  • The uplift capacity and displacement of an earth anchor for improving the wind resistance of the 1-2W type plastic film pipe on greenhouse was tested using the steel circular vertical earth anchor with various diameters and embedded depths (L) in dry sand. The diameter (B) of the model anchor is 90mm, 120mm, 150mm, respectively. The model tests were performed embedded depth ratios (L/B) ranging from $1{\sim}3$ in loose density. In the case of diameter 90mm, as the uplift loading increased, the uplift capacity also increased until the loading was reached to ultimate uplift capacity. After that, the uplift capacity was continually increased or decreased until the experiment was finished. In general, the ultimate uplift capacity was different depending upon the anchor diameter and embedded depth ratios.

  • PDF

A study on the sediment yields and raising of the spillway crest for the reservoir capacity enlargement (저수지 유역의 토사 유입 및 여수토 숭상 효과 조사)

  • Nam, Myoung-Hee;Suh, Seung-Duk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.324-329
    • /
    • 2001
  • Sediment yields from the reservoir watershed areas and raising of the spillway crest for the agricultural reservoir capacity enlargement were investigated and analysed through the 21 pilot reservoirs, have irrigated areas 200has. and over in the Kyoungpook province. In these studies, (1), the correlation analysis between various watershed characteristics and annual specific sediment yields were derived and (2), the excess effective reservoir capacity of the over 0.5m above the spillway crest could be estimated. In brief, catchment area should strongly be correlated with the annual specific sediment yields (R=0.90), the other side, average slope of the main stream is less than catchment area. The excess effective capacity of reservoir enlargement by the raising of spillway crest at 0.5m-height was resulted 12.1% of increasing capacity compare with the original reservoir capacity.

  • PDF

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.