• Title/Summary/Keyword: Variation law

Search Result 413, Processing Time 0.029 seconds

Legal Strategy for the sake of Enhancement of Safety of Lifts Operation - focusing on the Experience of UK - (승강기 안전성 제고를 위한 법제적 전략 - 영국의 경험을 참고하여 -)

  • Kim, Yong-Hoon
    • Journal of Legislation Research
    • /
    • no.54
    • /
    • pp.111-154
    • /
    • 2018
  • The protection of fundamental rights of people is a natural duty of a state. Since Constitutional Law declare that a state is obliged to protect the fundamental rights of people obviously, it is reasonable to postulate that a state has a duty to protect every person's right much more positively. Of course, it is true that whereas right of freedom is much more important in modern states, the social right becomes more important currently. Nevertheless, we have no choice but to put an emphasis on the importance of the right of freedom like modern states. Thus states are still bound to try to protect the right of people, specific duty of behavior for the sake of right of freedom belongs to states. In particular, due to the fact that lifts are essential to our comfortable life and the demage from the accident concerning with the lifts is fatal, the strategy for securing the safety of using the lifts is significant to some extent. And because it is true that the experience of UK that put an emphasis on the role of civil actors is meaningful to us, there seems implications for us. Accordingly, it is possible to consider the material components such as the check of safety before installation for the sake of safety enhancement, quality control for lifts parts, specification of check criterion and variation of check cycle etc. and personal ones such as specification of qualification of competent persons, guarantee of competent person's independence, variation of obligator's duty and variation of user's obligation etc. However, as the situation of UK is one thing and that of Korea is another, we don't have to adhere to the policy and the experience of UK strictly. Rather, we had better apply the policy and experience of UK to ours appropriately.

Directional Variation of Apparent Elastic Constants and Associated Constraints on Elastic Constants in Transversely Isotropic Rocks (횡등방성 암석에서 겉보기 탄성정수의 방향성 변화와 탄성정수 제약조건)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.150-168
    • /
    • 2023
  • The anisotropic behavior of rocks is primarily attributed to the directional arrangement of rock-forming minerals and the distribution characteristics of microcracks. Notably, sedimentary and metamorphic rocks often exhibit distinct transverse isotropy in terms of their strength and deformation characteristics. Consequently, it is crucial to gain accurate insights into the deformation and failure characteristics of transversely isotropic rocks during rock mechanics design processes. The deformation of such rocks is described by five independent elastic constants, which are determined through laboratory testing. In this study, the characteristics of the directional variation of apparent elastic constants in transversely isotropic rocks were investigated using experimental data reported in the literature. To achieve this, the constitutive equation proposed by Mehrabadi & Cowin was introduced to calculate the apparent elastic constants more efficiently and systematically in a rotated Cartesian coordinate system. Four transversely isotropic rock types from the literature were selected, and the influence of changes in the orientation of the weak plane on the variations of the apparent elastic modulus, apparent shear modulus, and apparent Poisson's ratio was analyzed. Based on the investigation, a new constraint on the elastic constants has been proposed. If the proposed constraint is satisfied, the directional variation of the apparent elastic constants in transversely isotropic rocks aligns with intuitive predictions of their tendencies.

Statistical Analysis on Microcrack Length Distribution in Tertiary Crystalline Tuff (제3기 결정질 응회암에서 발달하는 미세균열의 길이 분포에 대한 통계적 분석)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.23-37
    • /
    • 2011
  • The scaling properties on the length distribution of microcrack populations from Tertiary crystalline tuff are investigated. From the distribution charts showing length range with 15 directional angles and five groups(I~V), a systematic variation appears in the mean length with microcrack orientation. The distribution charts are distinguished by the bilaterally symmetrical pattern to nearly N-S direction. The whole domain of the length-cumulative frequency diagram for microcrack populations can be divided into three sections in terms of phases of the distribution of related curves. Especially, the linear middle section of each diagram of five groups represents a power-law distribution. The frequency ratio of linear middle sections of five groups ranges from 46.6% to 67.8%. Meanwhile, the slope of linear middle section of each group shows the order: group V($N60{\sim}90^{\circ}E$, -2.02) > group IV($N20{\sim}60^{\circ}E$, -1.55) > group I($N60{\sim}90^{\circ}W$, -1.48), group II($N10{\sim}60^{\circ}W$, -1.48) > group III($N10^{\circ}W{\sim}N20^{\circ}E$, -1.06). Five sub-populations(five groups) that closely follow the power-law length distribution show a wide range in exponents( -1.06 - -2.02). These differences in exponent among live groups emphasizes the importance of orientation effect. In addition, breaks in slope in the lower parts of the related curves represent the abrupt development of longer lengths, which is reflected in the decrease in the power-law exponent. Especially, such a distribution pattern can be seen from the diagram with $N10{\sim}20^{\circ}E,\;N10{\sim}20^{\circ}W$ and $N60{\sim}70^{\circ}W$ directional angles. These three directional angles correspond with main directions of faults developed around the study area. The distribution chart showing the individual characteristics of the length-cumulative frequency diagrams for 15 directional angles were made. By arraying above diagrams according to the categories of three groups(A, B and C), the differences in length-frequency distributions among these groups can be easily derived. The distribution chart illustrates the importance of analysing microcrack sets separately. From the related chart, the occurrence frequency of shorter microcracks shows the order: group A > group B > group C. These three types of distribution patterns could reveal important information on the processes occurred during microcrack growth.

Basic Study on the Variation of the Permeability of Groundwater Depending on the Characteristic of Soil Particles and Physical Factors (토양입자(土壤粒子)의 특성(特性) 및 물리적(物理的) 요인(要因)에 따른 지하수(地下水) 통수성(通水性) 변화(變化)에 대한 기초(基礎) 연구(硏究))

  • Choi, Sua;Kim, Jisun;Lee, Sangdon;Kim, Dongsu
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, analysis of the flow of water in the soil environment was attempted to examine the changing patterns of permeability coefficient, k, presented in Darcy's law depending on soil particle size and the pattern of mixed soil that main factor affecting ground water flow in soil environment. In addition, permeability coefficient patterns depending on changes in water temperature and concentration were measured. As a result, the permeability for the soil particle size and mixing pattern is proportional to the size of the particles, and it was also influenced by the porosity depending on the mixed pattern and stratification. Especially compared with the single particle, mixing different sizes samples showed a lower k than the value of smaller single particles. In addition, permeability of groundwater increased with increasing temperature, also permeability decreased depending on the concentration of ions in groundwater. The results of this study were expected to use as meaningful data for the phenomenon reflects the characteristics of the soil to understand mobility of groundwater in soil environment.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Rheological Properties of Sweet Potato Starch-sucrose Composite (고구마전분-sucrose 복합물의 레올로지 특성)

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

A Numerical study on characteristics of fluid flow in a three-dimensional discrete fracture network with variation of length distributions of fracture elements (3차원 이산 균열망 흐름장에서 균열요소의 길이분포 변화에 따른 내 유체 흐름 특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.149-161
    • /
    • 2019
  • In this study, the effect of the fluid flow characteristics on the length distribution of the fracture elements composing the fracture network is analyzed numerically using the 3D fracture crack network model. The truncated power-law distribution is applied to generate the length distribution of the fracture elements and the simulations of fluid flow are carried out with the exponent ${\beta}_l$ from 1.0 to 6.0. As a result of simulations, when the exponent ${\beta}_l$ increases, the length distribution of the fracture elements gradually decreases, and the connectivity between the fracture elements affecting the permeability of the fracture network becomes weak. When we analyzed the distributions of flow rate calculated at each fracture element with the exponent ${\beta}_l$, the mean flow rate at ${\beta}_l=1.0$ was estimated to be about 447 times larger than that at ${\beta}_l=6.0$ and for the flow calculated at the outflow boundary of the fracture network, the case of ${\beta}_l=1.0$ was estimated to be 6,440 times larger than that of ${\beta}_l=6.0$.

Kinematical Characteristics of the Translational and Pendular Movements of each Cervical Vertebra at the Flexion and Extension Motion (굴곡과 신전 수동운동 상태에서 개별경추의 진자운동 및 병진운동의 운동학적인 특징)

  • Park, Sung Hyuk;Choi, Han Sung;Hong, Hoon Pyo;Ko, Young Gwan
    • Journal of Trauma and Injury
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2006
  • Purpose: The aim of this study was to determine the kinematical characteristics of the pendular and the translational movements of each cervical vertebra at flexion and extension for understanding the mechanism of injury to the cervical spine. Methods: Twenty volunteers, young men (24~37 years), with clinically and radiographically normal cervical spines were studied. We induced two directional passive movements and then took X-ray pictures. The range of pendular movement could be measured by measuring the variation of the distance between the center point of two contiguous cervical vertebrae, and the range of translational movement could be measured by measuring the variation of the shortest distance between the center point of a vertebra and an imaginary line connecting the center points of two lower contiguous cervical vertebrae. The measurements were done by using a picture archiving and communicating system (PACS). Results: The total length of all cervical vertebrae in the neutral position was, on average, 133.66 mm, but in both flexion and extension, the lengths were widened to 134.83 mm and 134.79 mm, respectively. The directions of both the pendular and the translational movements changed at the $2^{nd}$ cervical vertebra, and the ranges of both movements were significantly larger from the $5^{th}$ cervical vertebra to the $7^{th}$ cervical vertebra for flexion and combined flexion and extension motion (p<0.05). Conclusion: The kinematical characteristics for flexion and extension motions were variable at each level of cervical vertebrae. The $1^{st}$ and the $2^{nd}$ cervical vertebrae and from the $5^{th}$ to the $7^{th}$ cervical vertebrae were the main areas of cervical spinal injury. This shows, according to "Hook's law," that the tissues supporting this area could be weak, and that this area is sensitive to injury.

The Variation of Industrial Location Demand by Changing Policy of Seoul Metropolitan Area (수도권 정책변화에 따른 산업입지 수요의 변동)

  • Lee, Hyeon-Joo;Kim, Mi-Suk
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.286-306
    • /
    • 2011
  • Based on the announcement by the National Competitiveness Council in 2008, this study analyzed the direction of the changing policy in Seoul Metropolitan Area promoted by the current government and to inquire into such the effect, research was done to study the changes in space demand by companies which respond sensitively to changes in regulation in Seoul Metropolitan Area. In addition, the effect of Seoul Metropolitan Area policy on company location is explored while company location changes and changes in direction of space demand due to easing of regulation in Seoul Metropolitan Area by the current government are examined. Research methods utilized empirical analysis and survey analysis. Empirical analysis utilized statistical data since 1980's. For survey analysis, the effect of changing policy in Seoul Metropolitan Area, which is an exogenous shock, on decision making of the enterprise is considered to derive the direction of demand for company manufacturing lots. The results of the study showed that decision for company location or factory size has been affected greatly by Seoul Metropolitan Area policy and domain regulation and institution to restrict permission area of a manufacturing building from the law of improvement plan of the Metropolitan area were the biggest regulatory policies. Due to easing of regulation in Seoul Metropolitan Area by the current government, the demand for manufacturing lot is expected to increase. In particular, the demand for manufacturing lot is expected to increase centered around Seoul Metropolitan Area and Chungcheong province while demand is expected to decrease in Gangwon province. The reason is because company preference is high for the Seoul Metropolitan Area which has the best transportation/logistics and market conditions in Korea. But in the case of Southeast region and Daegyung region that form exclusive economic zones, changing policy in Seoul Metropolitan Area has little impact. In the case of Seoul Metropolitan Area, demand increase does not occur in the entire area but instead, demand is expected to increase in growth management zones.

  • PDF