• 제목/요약/키워드: Variance-Covariance Matrix

Search Result 104, Processing Time 0.029 seconds

Near field acoustic source localization using beam space focused minimum variance beamforming (빔 공간 초점 최소 분산 빔 형성을 이용한 근접장 음원 위치 추정)

  • Kwon, Taek-Ik;Kim, Ki-Man;Kim, Seongil;Ahn, Jae-kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • The focused MVDR (Minimum Variance Distortionless Response) can be applied for source localization in near field. However, if the number of sensors are increased, it requires a large amount of calculation to obtain the inverse of the covariance matrix. In this paper we propose a focused MVDR method using that beam space is formed from output of far field beamformer at the subarray. The performances of the proposed method was evaluated by simulation. As a result of simulation, the proposed method has the higher spatial resolution performance then the conventional delay-and-sum beamformer.

Properties of alternative VaR for multivariate normal distributions (다변량 정규분포에서 대안적인 VaR의 특성)

  • Hong, Chong Sun;Lee, Gi Pum
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1453-1463
    • /
    • 2016
  • The most useful financial risk measure may be VaR (Value at Risk) which estimates the maximum loss amount statistically. The VaR tends to be estimated in many industries by using transformed univariate risk including variance-covariance matrix and a specific portfolio. Hong et al. (2016) are defined the Vector at Risk based on the multivariate quantile vector. When a specific portfolio is given, one point among Vector at Risk is founded as the best VaR which is called as an alternative VaR (AVaR). In this work, AVaRs have been investigated for multivariate normal distributions with many kinds of variance-covariance matrix and various portfolio weight vectors, and compared with VaRs. It has been found that the AVaR has smaller values than VaR. Some properties of AVaR are derived and discussed with these characteristics.

Analysis of Consumer's Purchasing Behavior on ICT Devices and Convergence Services in Korea (정보통신기기와 융합서비스에 대한 소비자 구매행태 분석)

  • Shin, Jungwoo;Kim, Chang Seob;Lee, Misuk
    • Informatization Policy
    • /
    • v.21 no.4
    • /
    • pp.81-97
    • /
    • 2014
  • The purpose of this research is to analyze consumers'choice behavior with regard to information and communication technology(ICT) devices and related services. This research focuses on the relationships not only within each category but also among different categories by considering multiple choice situations in a variety of categories simultaneously. The multivariate probit model with demographic variables and the alternative specific constant model with variance-covariance matrix are estimated using survey data; moreover, the multi-dimensional scaling method is utilized for the presentation of the relationship map. It is evident from the results that some devices and services have a complementary or substitute relationship each other. This study can provide useful information for the development of new products and services by understanding and predicting consumer's behavior.

A Study on Stochastic Simulation Models to Internally Validate Analytical Error of a Point and a Line Segment (포인트와 라인 세그먼트의 해석적 에러 검증을 위한 확률기반 시뮬레이션 모델에 관한 연구)

  • Hong, Sung Chul;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2013
  • Analytical and simulation error models have the ability to describe (or realize) error-corrupted versions of spatial data. But the different approaches for modeling positional errors require an internal validation that ascertains whether the analytical and simulation error models predict correct positional errors in a defined set of conditions. This paper presents stochastic simulation models of a point and a line segm ent to be validated w ith analytical error models, which are an error ellipse and an error band model, respectively. The simulation error models populate positional errors by the Monte Carlo simulation, according to an assumed error distribution prescribed by given parameters of a variance-covariance matrix. In the validation process, a set of positional errors by the simulation models is compared to a theoretical description by the analytical error models. Results show that the proposed simulation models realize positional uncertainties of the same spatial data according to a defined level of positional quality.

Assessing Correlation between Two Variables in Repeated Measurements using Mixed Effect Models (혼합모형을 이용한 반복 측정된 변수들 간의 상관분석)

  • Han, Kyunghwa;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.201-210
    • /
    • 2015
  • Repeated measurements on each variables of interest often arise in bioscience or medical research. We need to account for correlations among repeated measurements to assess the correlation between two variables in the presence of replication. This paper reviews methods to estimate a correlation coefficient between two variables in repeated measurements using the variance-covariance matrix of linear mixed effect models. We analyze acoustic radiation force impulse imaging (ARFI) data to assess correlation between three shear wave velocity (SWV) measurements in liver or spleen and spleen length by ultrasonography. We present how to obtain parameter estimates for the variance-covariance matrix and correlations in mixed effects models using PROC MIXED in SAS.

The Usage of an SNP-SNP Relationship Matrix for Best Linear Unbiased Prediction (BLUP) Analysis Using a Community-Based Cohort Study

  • Lee, Young-Sup;Kim, Hyeon-Jeong;Cho, Seoae;Kim, Heebal
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.254-260
    • /
    • 2014
  • Best linear unbiased prediction (BLUP) has been used to estimate the fixed effects and random effects of complex traits. Traditionally, genomic relationship matrix-based (GRM) and random marker-based BLUP analyses are prevalent to estimate the genetic values of complex traits. We used three methods: GRM-based prediction (G-BLUP), random marker-based prediction using an identity matrix (so-called single-nucleotide polymorphism [SNP]-BLUP), and SNP-SNP variance-covariance matrix (so-called SNP-GBLUP). We used 35,675 SNPs and R package "rrBLUP" for the BLUP analysis. The SNP-SNP relationship matrix was calculated using the GRM and Sherman-Morrison-Woodbury lemma. The SNP-GBLUP result was very similar to G-BLUP in the prediction of genetic values. However, there were many discrepancies between SNP-BLUP and the other two BLUPs. SNP-GBLUP has the merit to be able to predict genetic values through SNP effects.

Minimum Variance FIR Smoother for Model-based Signals

  • Kwon, Bo-Kyu;Kwon, Wook-Hyun;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2516-2520
    • /
    • 2005
  • In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother which is infinite impulse response (IIR) type estimator.

  • PDF

A Logistic Regression Analysis of Two-Way Binary Attribute Data (이원 이항 계수치 자료의 로지스틱 회귀 분석)

  • Ahn, Hae-Il
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.118-128
    • /
    • 2012
  • An attempt is given to the problem of analyzing the two-way binary attribute data using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the analysis of variance (ANOVA) may not be good enough, especially for the case that the proportion is very low or high. The logistic transformation of proportion data could be a help, but not sound in the statistical sense. Meanwhile, the adoption of generalized least squares (GLS) method entails much to estimate the variance-covariance matrix. On the other hand, the logistic regression methodology provides sound statistical means in estimating related confidence intervals and testing the significance of model parameters. Based on simulated data, the efficiencies of estimates are ensured with a view to demonstrate the usefulness of the methodology.

A Robust Ship Scheduling Based on Mean-Variance Optimization Model (평균-분산 최적화 모형을 이용한 로버스트 선박운항 일정계획)

  • Park, Nareh;Kim, Si-Hwa
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.2
    • /
    • pp.129-139
    • /
    • 2016
  • This paper presented a robust ship scheduling model using the quadratic programming problem. Given a set of available carriers under control and a set of cargoes to be transported from origin to destination, a robust ship scheduling that can minimize the mean-variance objective function with the required level of profit can be modeled. Computational experiments concerning relevant maritime transportation problems are performed on randomly generated configurations of tanker scheduling in bulk trade. In the first stage, the optimal transportation problem to achieve maximum revenue is solved through the traditional set-packing model that includes all feasible schedules for each carrier. In the second stage, the robust ship scheduling problem is formulated as mentioned in the quadratic programming. Single index model is used to efficiently calculate the variance-covariance matrix of objective function. Significant results are reported to validate that the proposed model can be utilized in the decision problem of ship scheduling after considering robustness and the required level of profit.

Underdetermined blind source separation using normalized spatial covariance matrix and multichannel nonnegative matrix factorization (멀티채널 비음수 행렬분해와 정규화된 공간 공분산 행렬을 이용한 미결정 블라인드 소스 분리)

  • Oh, Son-Mook;Kim, Jung-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.120-130
    • /
    • 2020
  • This paper solves the problem in underdetermined convolutive mixture by improving the disadvantages of the multichannel nonnegative matrix factorization technique widely used in blind source separation. In conventional researches based on Spatial Covariance Matrix (SCM), each element composed of values such as power gain of single channel and correlation tends to degrade the quality of the separated sources due to high variance. In this paper, level and frequency normalization is performed to effectively cluster the estimated sources. Therefore, we propose a novel SCM and an effective distance function for cluster pairs. In this paper, the proposed SCM is used for the initialization of the spatial model and used for hierarchical agglomerative clustering in the bottom-up approach. The proposed algorithm was experimented using the 'Signal Separation Evaluation Campaign 2008 development dataset'. As a result, the improvement in most of the performance indicators was confirmed by utilizing the 'Blind Source Separation Eval toolbox', an objective source separation quality verification tool, and especially the performance superiority of the typical SDR of 1 dB to 3.5 dB was verified.