• Title/Summary/Keyword: Variable structure control system

Search Result 493, Processing Time 0.029 seconds

Integral-Augmented Optimal VSS for Control of Uncertain SISO Systems (불확실 시스템의 제어를 위한 적분 최적 가변 구조 알고리듬)

  • Lee, Jung-Hoon;Moon, Gun-Woo;Lee, Dae-Sik;Lee, Ju-Jang;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.335-337
    • /
    • 1993
  • An integral-augmented variable structure system is suggested for the control of an uncertain SISO systems without the reaching phase problems. The integral-augmented sliding surface is defined in order to remove the reaching phase, then it is designed using the optimal technique. The example results show the effectiveness of the algorithm.

  • PDF

Three-Phase Current Balancing Strategy with Distributed Static Series Compensators

  • Yoon, Hanjong;Yoon, Dongkwan;Choi, Dongmin;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.803-814
    • /
    • 2019
  • This paper proposes a three-phase current balancing strategy in a power transmission system employing distributed static series compensators (DSSCs). With the proposed variable quadrature voltage injection method, the DSSC emulates either an inductive or a capacitive impedance into the transmission line, and the magnitudes of the phase currents are balanced. Hence, the phase imbalances in the power transmission system are significantly reduced. As a result, the power transfer capability of the transmission lines can be improved. The operational principle of the DSSCs, the hardware structure and the control algorithm are described in detail. Finally, the theoretical analyses and the proposed strategy are experimentally verified through a scaled down transmission system with DSSC prototypes.

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Implementation of Evolving Neural Network Controller for Inverted Pendulum System (도립진자 시스템을 위한 진화형 신경회로망 제어기의 실현)

  • 심영진;김태우;최우진;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-76
    • /
    • 2000
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of conventional techniques such as the pole placement and the optimal control based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Thus, in this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algorithm(RVEGA) was presented for stabilization of an IP system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. And the proposed ENNC was implemented successfully on the ADA-2310 data acquisition board and the 80586 microprocessor in order to stabilize the IP system. Through the simulation and experimental results, we showed that the finally acquired optimal ENNC was very useful in the stabilization control of IP system.

  • PDF

Seismic control performance and experimental study of multiple pounding tuned rolling mass damper

  • Peiran Fan;Shujin Li;Ling Mao
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.247-258
    • /
    • 2023
  • Multiple pounding tuned rolling mass damper (MPTRMD) distributed in the cavity of voided slabs is proposed to passively control multi-story frame structures, which disperses the mass of the oscillator to multiple dampers so that the control device can be miniaturized without affecting the vibration control performance. The mechanism and the differential motion equations of the MPTRMD-controlled multi-degree-of-freedom system are derived based on the Lagrange principle. Afterward, this advanced RMD is applied to a simplified 20-floor steel frame to evaluate the seismic control performance in the numerical analysis. A four-storey frame structure equipped with MPTRMD is then taken for a shaking table test to verify its effectiveness of control performance. The pounding mechanism has been detailed studied numerically and experimentally as well. The numerical and experimental results show that the proposed damper is practically promising not only for its prominent control performance but also for its lightweight and space-saving. Additionally, the pounding mechanism influenced by the variable impact parameters exhibits a balance between the two effects of motional limitations and energy dissipation.

The Control Algorithm of Power-conditioner for Stand-alone PV System (독립형 PV시스템용 전력변환기 제어 알고리즘)

  • 정영석;강기환;김홍성;정명웅;유권종;송진수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.209-215
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. therefore SPVS can be classified into variable types in accordance with connection type between battery and solar cell. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell and battery. Therefore SPVS with charge and discharge controller which can operate solar cell at maximum power point is designed and analyzed by simulation in this paper.

  • PDF

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

Design of Sliding Mode Controller for AC Servo Motor of circular interpolation error improvement (AC서보 모터의 원호보간 오차개선을 위한 슬라이딩모드 제어기 설계)

  • Kim Eun-youn;Lee Sing-mun;Kwak Gun-pyong;Kim Min-chan;Park Seung-Kyu;Ko Bong-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1685-1691
    • /
    • 2004
  • The objective of this study is aimed at reducing the contour error of AC Servo derives by improving the interpolation error of each axis through variable structure control system. The errors in machining process by AC Servo motor are due to many elements, such as the delay of the servo drivers, friction and the gain mismatch between x axis and y axis motors and so on. Sliding mode control system is applied to a AC servo drive as a numerical example in this paper. The experiment results which are compared with those of typical PI scheme show the validity of improvement in circular interpolation error of the system.

Speed Sensorless Vector Control of Induction Motor Using a Reduced-model Extended Kalman Filter (축소모델 확장 칼만필터를 이용한 유도전동기의 센스리스 벡터제어)

  • Heo, Jong-Myung;Seo, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1141-1143
    • /
    • 2001
  • This paper presents a detailed study of the reduced-model extended Kalman filter(EKF) for estimating the rotor speed of an induction motor drive. The general structure of the Kalman filter is reviewed and the various system vectors and matrices are defined. By including the rotor speed as a state variable, the EKF equations are established from a discrete two axis model of the three-phase induction motor, using the software MATLAB/Simulink, simulation of the EKF speed estimation algorithm is carried out for an induction motor drive with indirect vector control.

  • PDF