• 제목/요약/키워드: Variable speed wind turbine

검색결과 139건 처리시간 0.03초

풍력발전의 최대전력점 추종제어 방법에 관한 연구 (A study on the Maximum Power Point Tracking Control System of Wind Power Generation)

  • 고석철;이재;임성훈;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking (MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

풍력발전의 최대전력점 추종제어 방법에 관한 연구 (A study on the Maximum Power Point Tracking Control System of Wind Power Generation)

  • 고석철;이재;임성훈;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

30kW급 발전시스템의 계통 연계형 인버터 개발 (Development of Grid Connection Type Inverter for 30kW Wind Power Generation System)

  • 함년근;강승욱;김용주;한경희;안규복;송승호;김동용;노도환;오영진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.990-992
    • /
    • 2002
  • 30kW electrical power conversion system is delveloped for the variable speed wind turbine system. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and frequency of generator output vary according to the wind speed, a dc/dc boosting chopper is utilized to maintain constant dc link voltage. Grid connection type PWM inverter supply currents into the utility line by regulating the dc link voltage. The active power is controlled by q-axis current which the reactive power can be controlled by d-axis current reference change. The phase angle of utility voltage is detected using s/w PLL(Phased Locked Loop) in d-q synchronous reference frame. This scheme gives a low cost power solution for variable speed WECS.

  • PDF

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.

회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘 (Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter)

  • 정병창;권태화;송승호;김일환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권10호
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

이중여자 유도발전 풍력시스템의 정상상태 특성 해석 (Analysis of Steady State Characteristics of Doubly-Fed Induction Generator in Wind Turbine system)

  • 장보경;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.460_461
    • /
    • 2009
  • This paper analyzes the steady state characteristics for variable speed wind power system with doubly-fed induction generator(DFIG). This paper explains the equivalent circuit and phasor diagram of DFIG for different operating conditions. It also simulates the torque-slip characteristics with respect to changes of different parameters. Simulation results show the torque-slip characteristics, stator power factor-rotor voltage and stator current-rotor voltage.

  • PDF

풍력발전 제어에 적용되는 계측신호처리 필터에 대한 특성 고찰 (Characteristics of Filters for Signal Processing Applied to Wind Turbine Controllers)

  • 문석준;신윤호;정태영;임채환;류지윤
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.58-65
    • /
    • 2011
  • In variable-speed variable-pitch wind turbines, the conventional approach for controlling power-production operation relies on a generator-torque controller and a rotor-collective blade-pitch controller. Both controllers use the generator speed measurement as the sole feedback input. In order to mitigate unwanted excitation of the control system, many filters are adopted. In this study, the characteristics of some filters for signal processing are investigated based on frequency response function. They include low-pass filters, band-pass filters, and notch filters. Especially, this study focuses on design parameters of their filters.

풍력발전 제어에 적용되는 계측신호처리 필터에 대한 특성 고찰 (Characteristics of Filters for Signal Processing Applied to Wind Turbine Controllers)

  • 문석준;신윤호;정태영;임채환;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • In variable-speed variable-pitch wind turbines, the conventional approach for controlling power-production operation relies on a generator-torque controller and a rotor-collective blade-pitch controller. Both controllers use the generator speed measurement as the sole feedback input. In order to mitigate unwanted excitation of the control system, many filters are adopted. In this study, the characteristics of some filters for signal processing are investigated based on frequency response function. They include low-pass filters, band-pass filters, and notch filters. Especially, this study focuses on design parameters of their filters.

  • PDF

해양환경의 변동성을 고려한 해상풍력터빈 지지구조물의 기대수명 평가 (Expected Life Evaluation of Offshore Wind Turbine Support Structure under Variable Ocean Environment)

  • 이기남;김동현;김영진
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.435-446
    • /
    • 2019
  • Because offshore structures are affected by various environmental loads, the risk of damage is high. As a result of ever-changing ocean environmental loads, damage to offshore structures is expected to differ from year to year. However, in previous studies, it was assumed that a relatively short period of load acts repeatedly during the design life of a structure. In this study, the residual life of an offshore wind turbine support structure was evaluated in consideration of the timing uncertainty of the ocean environmental load. Sampling points for the wind velocity, wave height, and wave period were generated using a central composites design, and a transfer function was constructed from the numerical analysis results. A simulation was performed using the joint probability model of ocean environmental loads. The stress time history was calculated by entering the load samples generated by the simulation into the transfer function. The damage to the structure was calculated using the rain-flow counting method, Goodman equation, Miner's rule, and S-N curve. The results confirmed that the wind speed generated at a specific time could not represent the wind speed that could occur during the design life of the structure.

3MW급 해상풍력 발전시스템 개발 (3MW Class Offshore Wind Turbine Development)

  • 주완돈;이정훈;김정일;정석용;신영호;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF