• Title/Summary/Keyword: Variable speed motor

Search Result 490, Processing Time 0.026 seconds

A Study on the Digital inverter for SRM Drive using Microcontroller (마이크로 콘드롤러를 이용한 SRM구동용 디지털 방식 인버터에 관한 연구)

  • 안진우;김철우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.6
    • /
    • pp.81-87
    • /
    • 1996
  • This paper is to develop a digital inverter using microcontroller for a Switched Reluctance Motor (SRM) driver. The closed-loop speed control system with fixed switching angle and variable voltage control is used to from a flat-topped phaes current and to simplfiy the drive system. This could be driven in a wide speed range with flat-topped current. Mifcrocontroller os used to be compact and to have a flexbility in the control system.

  • PDF

A Computing Switching Angle for Optimal Operation of SRM with Variable Speed Operation (가변속도 구동용 SRM의 최적운전을 위한 스위칭각 산정)

  • Choi Kyeong-Ho;Kim Nam-Hun;Kim Min-Huei;Baik Won-Sik;Kim Dong-Hee;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.239-243
    • /
    • 2004
  • This paper presents a proper switching angle calculation method of Switched Reluctance Motor (SRM) for drill. The characteristic of SRM drive is very related to the scheduling of commutation angle and current waveforms. Therefore, a selection method of switching turn-on and turn-off angle is suggested for adaptational operation of SRM with varied rotor speed and load. Simulation and experimental results are presented for the validation of proposed method.

  • PDF

Speed Sensorless Control of PMSM by Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Kim, Y.S.;Ryoo, S.R.;Kim, K.T.;Kim, H.I.;Park, S.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.126-128
    • /
    • 2004
  • This paper investigates an improved sliding mode observer for the speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed algorithm is verified through the simulation and experimentation.

  • PDF

A Study on Sensorless Control of a PMSM using Sliding Mode Observer in High Speed Range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • 강계룡;김장목;이상혁;황근배;김경훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • An iterative sliding mode observer is proposed to sensorless control of a PMSM(Permanent Magnet Synchronous Motor). The proposed sliding mode observer has the character which is robust to the disturbance and parameters variation. A low pass filter with the variable cut-off frequency is also proposed to compensate the delay of the rotor angle according to the rotor speed, it is led to save memory and minimize operation time. Experimental results show that the proposed sliding mode observer leads to the proper performance.

Evaluation of Insulation Performance for Stator Winding of the Inverter Driven Induction Motor According to Impregnation Methods (함침기법에 따른 인버터 구동 유도전동기 고정자 권선의 절연성능 평가)

  • Hwang, Don-Ha;Kang, Dong-Sik;Lee, In-Woo;Kim, Dong-Hee;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.487-492
    • /
    • 2006
  • Inverter driven induction motors with high speed switching and advanced PWM techniques are widely used for variable speed applications. Recently, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter output. In this paper, the detailed insulation test results of 26 low-voltage induction motors are presented. Six different types of insulation techniques are applied to 26 motors. The insulation characteristics are analyzed with partial discharge, inception voltage, AC current, and dissipation factor tests. Also, breakdown tests by high voltage pulses are performed. From the above test data the effects due to different wires and insulation techniques on the insulation characteristics of low-voltage induction motors are compared and analyzed. The insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF

A New Adaptive Sliding Mode Observer-Based Control of Induction Motors with Uncertainties (새로운 적응 슬라이딩 모드 관측기에 기초한 불확실성을 갖는 유도전동기 제어)

  • Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1276-1278
    • /
    • 2005
  • In this paper, we propose an adaptive sliding mode observer-based control of induction motors with uncertainties. The proposed adaptive sliding mode flux observer generates estimates both for the unknown parameters(load torque and rotor resistance) and for the unmeasured state variable (rotor fluxes); they converge to the corresponding true value under persistency of excitation which actually holds in typical operating conditions. The proposed controller guarantees speed tracking and bounded signals for every initial condition of the motor. Simulations show that all estimation errors tend quickly to zero so that high tracking performances are achieved both for speed and rotor flux.

  • PDF

The Current and Power Waveform Improvement of a $3{\Phi}$ Induction Motor with LC Filter Driven by a Digital Bridge Inverter (디지탈 브리지형 인버터로 구동되는 3상유도전동기의 LC 필터에 의한 전류 및 전력 파형 개선)

  • Chung, J.Y.;Park, J.G.;Kang, C.N.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.553-555
    • /
    • 1996
  • This paper concerns with a method to improve the current and power waveforms of the variable speed $3{\Phi}$ AC motor system driven by the single-pulse PWM, and the current waveforms and $3{\Phi}$ power waveforms are analyzed by FFT under various running conditions. By the performance analysis through the experiments, the following results have been obtained. AC source of pseudo sine waveform can be obtained from the modulated alternating square voltage by means of the well designed LC filter. It is confirmed that current waveforms and $3{\Phi}$ power waveforms can be improved by utilizing the high order low pass LC filter than that of lower order. Especially, current waveforms and $3{\Phi}$ power waveforms tan be much improved at low frequency domain. $3{\Phi}$ power waveforms have a smatter ripple and bigger power by utilizing the high order low pass LC filter than that of lower order. Also, the running condition of $3{\Phi}$ AC motor is good at low frequency domain.

  • PDF

Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears (복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화)

  • Yang, Si-U;Kim, Nam-Wook;Yang, Ho-Rim;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.