• Title/Summary/Keyword: Variable speed heat pump

Search Result 60, Processing Time 0.025 seconds

An Experimental Study on Variable-Speed Control of an Ground-Water Circulation Pump for a Ground Source Multi-Heat Pump System (주거용 건물 지열원 멀티 히트펌프시스템의 지열순환펌프 가변유량제어에 관한 실증연구)

  • Song, Suwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.443-449
    • /
    • 2013
  • The purpose of this study is to propose an enhanced variable-speed control method of ground-water circulation pumps using inlet and outlet ground-water temperature difference and analyze its effect for the ground source multi-heat pump system installed in a single-family house. As a result, it has shown to significantly reduce the electricity use of ground-water circulation pump and improve overall system Coefficient of Performance (COP) due to the proposed variable-speed control under partial load conditions after oversized and inefficient single-speed pump retrofit.

Study on the Performance of a Variable Speed Cascade Heat Pump under Various Operating Conditions (운전조건에 따른 가변속 캐스케이드 열펌프의 성능 특성 연구)

  • Jeong, Kwangmoo;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Most researches done on heat pumps have been on heat pumps for refrigeration, cooling and heating. There is therefore the need for more research on hot water heat pumps, especially for high temperature. Even though the cascade heat pump cycle has a great potential more efficient hot water generation even at low evaporating temperatures, it has been researched least for this purpose. In this study, the heating performance of a variable speed cascade heat pump was investigated by varying operating conditions. For the same heating capacity values, it was found that increasing the low stage compressor speed was more suitable for enhancing the performance of the system to get a higher temperature.

An Experimental Investigation on the Variation of Heating Performance Due to the Refrigerant Flow Control in a Variable-Speed Heat Pump (가변속 열펌프의 냉매 유량제어에 의한 난방성능 변화에 관한 실험적 연구)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.746-756
    • /
    • 2001
  • An experimental study was conducted to investigated the effect of refrigerant flow control on the performance of a variable-speed heat pump operating in both cooling and heating mode. For this purpose, cooling and heating capacity, EER and refrigerant mass flow rate corresponding to an electronic valve as well as a capillary tube were measured as functions of compressor speed, length of capillary tube (or valve opening of the electronic valve), refrigerant charge, and outdoor temperature. From the comparison of experimental results, it was found that the performance variation due to the electronic valve opening became significant as the operating conditions(outdoor temperature and compressor speed) deviated from the standard condition at which heating capacity and EER were rated for the indicated capillary tube.

  • PDF

Heating Performance Characteristics of a Heat Pump with a Variable Speed Injection Scroll Compressor (인젝션형 가변속 스크롤 압축기를 적용한 히트펌프의 난방성능 특성에 관한 연구)

  • Ko, Suk-Bin;Heo, Jae-Hyeok;Cho, Il-Yong;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.377-384
    • /
    • 2012
  • Vapor injection technique has been applied to prevent performance degrdation of a heat pump at low ambient temperatures. In this study, the heating performance of a heat pump with a variable speed injection scroll compressor using R-410A was investigated by applying sub-cooler vapor injection(SCVI) and flash tank vapor injection(FTVI). The heating performance of the heat pump was measured by varying compressor frequency and outdoor temperature. The heating capacity of the FTVI system was 8~10% higher than that of the SCVI system at all operating conditions. On the other hand, the heating performance improvement with the increase in the compressor frequency was more prominent in the SCVI system than in the FTVI system.

Capacity Modulation of a Multi-Type Heat Pump System Using PID Control (PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 정대성;김민성;김민수;이원용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

Analysis on the performance characteristics of a variable-speed, roller-type vane compressor operating at low evaporating temperature (낮은 증발온도에서 운전되는 가변속 롤러형 베인 압축기의 성능특성에 관한 분석)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.193-204
    • /
    • 1999
  • Performance of a variable-speed, roller-type vane compressor was evaluated at low evaporating temperature. First, an experimental investigation was conducted to examine the performance variation as functions of both outdoor temperature and rotating speed. For this purpose, a typical heat pump was implemented as a test apparatus to measure mass flow rate and power input. Secondly, computational investigations corresponding to the heat pump test conditions were performed to predict compressor performance using ORNL Map-Based compressor model. Results obtained from the heat-pump experiments showed that both mass flow rate and power consumption were sensitively dependent on both evaporating temperature and compressor speed as was predicted from the computational results. From the comparisons of both experimental and computational results, it was well recognized that the ORNL model was subjected to larger error in the accuracy of prediction as outdoor temperature decreased. When the outdoor temperature was above $-5^{\cire}C$, errors of predicted values corresponding to both mass flow rate and power consumption were estimated as $\pm$10% and $\pm$ 15%, respectively. Finally, it is suggested that the ORNL model needs to be re-evaluated if compressor map data tested below $-5^{\cire}C$(in evaporating temperature) are available.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate (용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chan-Yong;Choi, Jong-Min
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF