• Title/Summary/Keyword: Variable geometry turbocharger

Search Result 20, Processing Time 0.024 seconds

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

Study on the Improvement Methods of Engine Efficiency in Hybrid Excavator (하이브리드 굴삭기용 엔진의 효율 향상 방안에 관한 연구)

  • Park, Minje;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.392-400
    • /
    • 2016
  • In this paper, a study based on engine operating conditions versus hybrid excavator engines was conducted about the engine performance and fuel consumption via the 1-D engine simulation model. First of all, engine operating points with performance and emission were determined by driving patterns. The 1-D HFEM(High Frequency Engine Model) was developed for deep insight into engine combustion and the energy conversion phenomena. In accordance with changing operating points, especially High Idle and Rated output conditions, engine parameters and systems such as turbocharger(Waste Gate Turbocharger and Variable Geometry Turbocharger) injection strategies and EGR(Exhaust Gas Recirculation) should be considered. Therefore, various configurations and parametric analysis with optimization methods in hybrid excavator were simulated and optimized by NLPQL(Non-linear Programming by Quadratic Lagrangian algorithm) in 1-D HFEM. As a result, the fuel consumption with the developed hybrid electric excavator engine could be significantly decreased and bsfc(Brake Specific Fuel Consumption) was also reduced about 5 % to 7 % without any performance degradation.

The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger (EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

Development of Turbine Mass Flow Rate Model for Variable Geometry Turbocharger Using Artificial Neural Network (인공신경망을 이용한 가변 기구 터보차저의 터빈 질량유량 모델링)

  • Park, Yeong-Seop;Oh, Byoung-Gul;Lee, Min-Kwang;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.783-790
    • /
    • 2010
  • In this paper, we propose a turbine mass flow rate model for a variable geometry turbocharger (VGT) using an artificial neural network (ANN). The model predicts the turbine mass flow rate using the VGT vane position, engine rotational speed, exhaust manifold pressure, exhaust manifold temperature, and turbine outlet pressure. The ANN is used for the estimation of the effective flow area. In order to validate the results estimated by the proposed model, we have compared estimation results with engine experimental results. The results, in addition, represent improved estimation accuracy when compared with the performance using the turbine map.

Prediction of the Transient Performance of the Passenger Diesel Engine with Turbocharger using HIL (HIL을 이용한 터보과급기 승용 디젤 엔진의 과도 성능 예측)

  • Chung, Jin-Eun;Jin, Young-Wook;Jeong, Dong-Young;Chung, Jae-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.127-132
    • /
    • 2009
  • The transient performance of the passenger diesel engine equipped with the variable geometry turbocharger was simulated using HIL(hardware-in-the-loop) system. The system consists of engine model as software, and the turbocharger test bench as hardware. The engine model is mean value model which is programmed by the Simulink of the Mathworks. The turbocharger test bench is composed of a blower, some sensors, and DAQ boards. A real time simulation is possible since the operating system based on the real time is included. The results show the good response for the transient characteristics. Therefore this HIL system can be used for development of the new turbocharger effectively.

Effects of VGT on Part Load Performance of Diesel Engine (VGT가 디젤엔진의 부분부하 성능에 미치는 영향)

  • Choi, Kwon Sick;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.680-686
    • /
    • 2004
  • Recently, the application of variable geometry turbocharger (VGT) to the high speed direct injection (HSDI) diesel engine has gained more and more interest in automotive industry. A steady state experimental investigation has been undertaken on a 1.5L HSDI diesel engine to verify the benefits of VGT comparing to the standard engine having a waste gate turbocharger (WGT). Specifically, part load performances (e.g., fuel economy and emission) have been investigated under various vane angles of the VGT. The results show that the real exhaust gas recirculation (EGR) rate as well as the pumping loss is very important to improve break specific fuel consumption (BSFC). It was previously known that the pumping loss only is a main parameter. In addition, the trade-off relationship between BSFC and NOx according to boost pressure, and the decreasing tendency of NOx with increasing real EGR rate have been verified. 1-D numerical analysis also has been performed, and the numerical results are in good agreement with experimental results.

  • PDF

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Compare Efficiency and Characteristics according to the WGT and VGT Application on the Off-road Engines (Off-road 엔진에서 WGT와 VGT장착에 따른 효율 및 특성 비교)

  • Shin, Jaesik;kang, Jungho;Ha, Hyeongsoo;Jung, Haksup;Pyo, Sukang
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • The aim of this study is to compare the effectiveness of turbo chargers on engines for off-road use when combined with WGT and VGT technologies. The effectiveness of turbo chargers was measured and performance was compared using a functional model. Exhaust characteristics were compared using WGT and VGT technologies through a gas analyzer. Results showed VGT technology was more effective at high RPM compared to WGT technology. When it came to maximising turbo performance, VGT was more effective than WGT in every test. WGT and VGT produced similar exhaust NOx levels, whereas the VGT was more effective on the PM.

A Study of Low Temperature Combustion System Optimization for Heavy Duty Diesel Engine (대형디젤엔진의 저온연소 시스템 최적화에 관한 연구)

  • Han, Youngdeok;Shim, Euijoon;Shin, Seunghyup;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-184
    • /
    • 2015
  • According to the regulation on the environment and fuel efficiency is becoming strict, many experiments are conducted to improve efficiency and emission in internal combustion engines. LTC (Low temperature combustion) technology is a promised solution for low emissions but there are a few barriers for the commercial engine. This paper includes optimization that applies LTC method to heavy duty diesel engine. Adequate LTC was applied to low and middle load as adaptability in heavy duty diesel engine, and optimization focused on reduction of fuel consumption was proceeded at high load. Through this research, strategy for practical use of LTC was selected, and fuel consumption has improved on the condition that satisfies the emission regulation at systematic viewpoint.