• Title/Summary/Keyword: Variable capacitors

Search Result 35, Processing Time 0.025 seconds

Characteristic comparisons of the constant current LED driver by the ripple of the input voltage (LED 정전류 구동회로의 입력전압 리플 크기에 의한 특성 비교)

  • Park, Chong-Yeun;Jeon, In-Ung;Yoo, Jin-Wan;Choi, Young-Min
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.115-118
    • /
    • 2012
  • Recently, there are a lot of papers in order to replace the electrolytic capacitor into the film capacitor in output of PFC(Power Factor Correction). However, the film capacitor, which has capacitance of low values, causes a large ripple voltage in output of PFC. The LED drivers are connected series in the output of PFC and affected by the magnitude of voltage ripple. In this paper, we have compared the fixed frequency method with the variable frequency for the constant-current control and propose the control method to avoid the sub-harmonic oscillation in the variable input voltage. An 80W PFC, using film capacitors instead of electrolytic capacitors, and LED driver has been built and compared the fixed frequency control method with the variable frequency control method.

  • PDF

Planar Frequency-Reconfigurable Monopole Antenna Design (가변 주파수 특성을 갖는 평면형 모노폴 안테나 설계)

  • Kim, Youngkyu;Lim, Joingsik;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1121-1127
    • /
    • 2014
  • In this paper, a planar frequency reconfigurable antenna is proposed with variable capacitors. The proposed one is designed with a planar monopole, and varies resonant frequencies by variable capacitive loading of a varactor diode. The equivalent circuit and electromagnetic(EM) simulation are utilized for the analysis at the variable characteristic design of the antenna, and the same radiation performance. The implemented frequency variable monopole antenna has been verified by comparing prototypes with designed capacitors and ones with biased varactor diodes. The proposed antenna has presented the resonant frequency variations from 2.25 GHz to 2.42 GHz.

High-Q Micromechanical Digital-to-Analog Variable Capacitors Using Parallel Digital Actuator Array (병렬 연결된 다수의 디지털 구동기를 이용한 High-Q 디지털-아날로그 가변 축전기)

  • Han, Won;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.137-146
    • /
    • 2009
  • We present a micromechanical digital-to-analog (DA) variable capacitor using a parallel digital actuator array, capable of accomplishing high-Q tuning. The present DA variable capacitor uses a parallel interconnection of digital actuators, thus achieving a low resistive structure. Based on the criteria for capacitance range ($0.348{\sim}1.932$ pF) and the actuation voltage (25 V), the present parallel DA variable capacitor is estimated to have a quality factor 2.0 times higher than the previous serial-parallel DA variable capacitor. In the experimental study, the parallel DA variable capacitor changes the total capacitance from 2.268 to 3.973 pF (0.5 GHz), 2.384 to 4.197 pF (1.0 GHz), and 2.773 to 4.826 pF (2.5 GHz), thus achieving tuning ratios of 75.2%, 76.1%, and 74.0%, respectively. The capacitance precisions are measured to be $6.16{\pm}4.24$ fF (0.5 GHz), $7.42{\pm}5.48$ fF (1.0 GHz), and $9.56{\pm}5.63$ fF (2.5 GHz). The parallel DA variable capacitor shows the total resistance of $2.97{\pm}0.29\;{\Omega}$ (0.5 GHz), $3.01{\pm}0.42\;{\Omega}$ (1.0 GHz), and $4.32{\pm}0.66\;{\Omega}$ (2.5 GHz), resulting in high quality factors which are measured to be $33.7{\pm}7.8$ (0.5 GHz), $18.5{\pm}4.9$ (1.0 GHz), and $4.3{\pm}1.4$ (2.5 GHz) for large capacitance values ($2.268{\sim}4.826$ pF). We experimentally verify the high-Q tuning capability of the present parallel DA variable capacitor, while achieving high-precision capacitance adjustments.

Compact Metamaterial-Based Tunable Phase Shifter at 2.4 GHz

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.137-139
    • /
    • 2013
  • A compact metamaterial (MTM)-based tunable phase shifter consisting of four unit cells with a simple DC bias circuit has been designed at 2.4 GHz. The variable series capacitors and shunt inductors that are required to be loaded periodically onto a host transmission line are realized employing only chip variable capacitors (varactors). In addition, the proposed phase shifter requires only one DC bias source to control the varactors, with the matching condition of the MTM line automatically satisfied. The measured phase shifting range is $285.2^{\circ}$ (from $-74.2^{\circ}$ to $211^{\circ}$). The measured insertion loss is approximately 1.5 dB. The circuit/electromagnetic-simulated and measured results are in good agreement.

Characteristics of Variable Wireless Charging System Applying Superconducting Coils (초전도 코일을 적용한 무선 충전시스템 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.804-808
    • /
    • 2018
  • Interest in wireless power transfer (WPT) has been growing recently due to the rapid increase in the use of electronic devices. Wireless charging systems are currently being applied to mobile phones and many studies are being conducted to apply wireless charging systems to various devices. The current wireless charging systems are capable of 1:1 charging. For wireless charging, when the devices with the same resonance frequency are present in the vicinity, the charging efficiency may be significantly lowered due to frequency interference or the wireless charging systems may stop operating. In this paper, variable capacitors were applied to a superconducting WPT system to solve the frequency interference among multiple devices with the same frequency. When a wireless charging system was performing 1:1 operation, the frequency of the other devices was varied using variable capacitors. As a result, it was confirmed that the highly efficient WPT is possible without frequency interference even when multiple receivers are present.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Four switch three-phase Z-source rectifier with reduced capacitor values

  • ANVAR, IBADULLAEV;Yoo, Dae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.303-304
    • /
    • 2014
  • This paper describes Four Switch Three-Phase Z-Source rectifier with reduced value capacitors. This configuration has some advantages in term of small size of the circuit. The rectifier has buck-boost function by shoot-through state. Also, the rectifier has the advantage of decreasing inrush current in start-up and transient states. In order to reduce harmonics PWM modulation technique with a variable index has been suggested. Four Switch Three-Phase Z-Source rectifier with reduced value capacitors can output stable DC. Principles and dynamics of the system are discussed in detail.

  • PDF

An Improved Voltage Control Scheme for DC-Link Voltage Balancing in a Four-Level Inverter (4-레벨 인버터의 DC-링크 전압 균형을 위한 향상된 전압 제어 기법)

  • Kim, Rae-Yeong;Lee, Yo-Han;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.544-554
    • /
    • 1999
  • Multi-level inverters are now receiving widespread interest form the industrial drives for high power variable speed applications. Especially, for the high power variable speed applications, a diode clamped multi-level inverter has been widely used. However, it has the inherent problem that the voltage of the link capacitors fluctuates. This paper describes a voltage control scheme effectively to suppress the DC-link potential fluctuation for a diode clamped four-level inverter. The current to flow from/into the each link capacitor is analyzed and the operation limit is obtained when a conventional SVPWM is used. To overcome the operation limit, a modified carrier-based SVPWM is proposed. Various simulation and experiment results are presented to verify the proposed voltage control scheme for DC-link voltage balancing.

  • PDF

Characterization of Microfluidically Variable Capacitors (미세유체 제어방법을 사용한 가변 커패시터)

  • Koo, Chiwan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.839-843
    • /
    • 2019
  • This paper demonstrates a variable capacitor using fluids as dielectric material and investigates the possibility of its application to a magnetic resonance microscopy's coil. The capacitor structure was integrated with a microfluidic channel and the capacitance was measured while changing the filling percentage of fluids in the channel. The measured capacitance when filling DI water and mineral oil was changed from 1.7 pF to 12 pF and from 1.7 pF to 2 pF, respectively.