• Title/Summary/Keyword: Variable Thickness

Search Result 652, Processing Time 0.027 seconds

Corrosion Monitoring of Reinforcing Bars in Cement Mortar Exposed to Seawater Immersion-and-dry Cycles (해수침지-건조 환경에 노출된 모르타르속 철근의 부식속도 평가)

  • Kim, Je-kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.10-18
    • /
    • 2018
  • The primary purposes of this study are to understand a fundamental aspect of current uniformity around a reinforcing bar (rebar) in cement mortar, and to develop an accurate monitoring method in a wet-dry cycling process with the alternative current (AC) impedance method. Three cement mortar specimens with two embedded rebars were prepared in the laboratory. As a main variable, the distance between two rebars was designed to be 10, 20 and 30 mm with the same thickness of 20 mm. To simulate the corrosion of rebars in concrete structures in a marine environment, three cement mortar specimens were exposed to 15 wet-drying cycles (24-hour-immersion in seawater and 48-hour-drying in a room temperature) in the laboratory. It was observed that the potential level shifted to a noble value during corrosion potential monitoring, which is attributed to acceleration of dissolved oxygen diffusion at the drying process. AC impedance was measured in a frequency range from 100 kHz to 1 mHz on a wet-drying process. A theoretical model was proposed to explain the interface condition between the rebars and cement mortar by using the equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE (constant phase element). It was observed that the diffusion impedance appeared in a low frequency range as corrosion of rebars progresses. At the drying stage of the wet-drying cycles, the currents line for monitoring tended to be non-uniform at the interface of rebar/mortar, being phase shift, ${\theta}$, close to $-45^{\circ}$.

The statistical factors affecting the freezing of the road pavement (도로포장체의 동결에 영향을 미치는 통계적 요인)

  • Kim, Hyun-Ji;Lee, Jea-Young;Kim, Byung-Doo;Cho, Gyu-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • Due to the character of the climate of Korea, the pavement of a road is Influenced by freezing in winter season and thawing in thawing season. In the last few years, several articles have been devoted to the study to minimize the damage of freezing and thawing action. The purpose of this paper is to identify appropriacy of factors that influence road pavement thickness. We conduct the decision tree analysis on the field data of road pavement. The target variable is 'Frost penetration'. This value was calculated from the temperature data. The input variables are 'Region', 'Type of road pavement', 'Anti-frost layer', 'Month' and 'Air temperature'. The region was divided into 9 regions by freezing index $350{\sim}450^{\circ}C{\cdot}day$, $450{\sim}550^{\circ}C{\cdot}day$, $550{\sim}650^{\circ}C{\cdot}day$. The type of road pavement has three-section such as area of cutting, boundary area of cutting and bankin, lower area of banking. As the result, the variables that influence 'Frost penetration' are Month, followed by anti-frost layer, air temperature and region.

Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea (동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원)

  • Yi, Young-Mi;Yoo, Dong-Geun;Kang, Nyeon-Keon;Yi, Bo-Yeon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.74-87
    • /
    • 2014
  • Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin reveals that the Quaternary sequence consists of four stratigraphic units separated by erosional unconformities. Individual stratigraphic unit includes eighteen mass transport deposits which are variable in geometric characteristics and spatial distribution. Each mass transport deposit on the seismic profile is acoustically characterized by chaotic or transparent seismic facies, and shows wedge or lens-shaped external geometry. The mass transport deposits, which comprise a succession of stacked wedges, mainly occur on the southern slope, and their thickness gradually decreases toward the basin plain. The time structure map of erosional unconformities shows that a tectonic-induced structural high and troughs toward the northwest and northeast are developed at the central part of the basin. Based on the isochron map, the mass transport deposits, originated from southern part of the study area, transported to the basin plain and can be divided into two groups by the structural high. Consequently, the mass transport deposits within the Quaternary sequence in the Ulleung Basin are largely controlled by the large amounts of sediment supply, dissociation of gas hydrate during the lowstands, and central structural high.

Development of Bond Strength Model for FRP Plates Using Back-Propagation Algorithm (역전파 학습 알고리즘을 이용한 콘크리트와 부착된 FRP 판의 부착강도 모델 개발)

  • Park, Do-Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 2006
  • In order to catch out such Bond Strength, the preceding researchers had ever examined the Bond Strength of FRP Plate through their experimentations by setting up of various fluent. However, since the experiment for research on such Bond Strength takes much of expenditure for equipment structure and time-consuming, also difficult to carry out, it is conducting limitedly. This Study purposes to develop the most suitable Artificial Neural Network Model by application of various Neural Network Model and Algorithm to the adhering experiment data of the preceding researchers. Output Layer of Artificial Neural Network Model, and Input Layer of Bond Strength were performed the learning by selection as the variable of the thickness, width, adhered length, the modulus of elasticity, tensile strength, and the compressive strength of concrete, tensile strength, width, respectively. The developed Artificial Neural Network Model has applied Back-Propagation, and its error was learnt to be converged within the range of 0.001. Besides, the process for generalization has dissolved the problem of Over-Fitting in the way of more generalized method by introduction of Bayesian Technique. The verification on the developed Model was executed by comparison with the resulted value of Bond Strength made by the other preceding researchers which was never been utilized to the learning as yet.

Experimental Assessment of Hemostatic Agents: Comparison with New Developed Chitosan-Based Material (신개발 키토산 제재의 지혈 효과에 대한 비교)

  • Cho, Young-Kyoo;Lee, Sang-Yun;Kim, Tae-Jung;Lim, Hyun-Ju;Oh, Eun-Jung;Lee, Soo-Bok;Choi, Kang-Young;Yang, Jung-Dug;Cho, Byung-Chae;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.369-375
    • /
    • 2011
  • Purpose: Many hemostatic agents and dressings have been tested with variable degree of success. Chitosan has a positive charge, it attracts red blood cells, which have a negative charge. Our goal is to test the efficacy of new developed chitosan-based hemostatic materials in providing durable hemostasis in a high-flow arterial wound model. Methods: We compared each group with SD rats motality tests and in vitro blood compatibility test by blood clotting index (BCI). We devided the SD rats into 6 groups (N =15) by type of hemostatic agents. A: 100% nonwoven chitosan (degree of the deacetylation: 90%). B: 50% N-acetylation on nonwoven of chitosan gel (degree of the deacetylation: 50%). C: 60% N-acetylation on nonwoven of chitosan ge (degree of the deacetylation: 40%)l. D: Cutanplast$^{(R)}$. E: HemCon$^{(R)}$ F: Gauze. In vivo test, a proximal arterial injury was created in unilateral femoral arteries of 90 anesthetized SD rats. Each materials was made same size and thickness then applied to the injury site for 3 minutes. In vitro test, we compared each group with BCI in human blood. Results: In vivo test, group A showed lower motality rate of 46% than any other groups, Group B and C showed lower motality rate of 60% than group D and E's motality rate of 66%. In vitro test, BCI of group A ($30.6{\pm}1.2$) and B ($29.3{\pm}1.0$) were showed nearly about group D ($29.1{\pm}1.8$) and E ($27.4{\pm}1.6$). Group C ($37.1{\pm}2.0$) showed higher BCI than group A and B, it means group C decreased blood clotting. Conclusion: In conclusion, this study suggests a newly developed chitosan-based hemostatic materials induced durable hemostasis and increased blood clotting, and are considered as effective biologic hemostatic agents.

A Master Packaging System for Preserving Qualities of Peaches in the Fresh Produce Supply Chain (농산물 유통과정에서 복숭아의 품질유지를 위한 마스터 포장 시스템)

  • Jeong, Mijin;An, Duck Soon;Park, Woo Po;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • A packaging system integrated in primary and secondary packages to deliver consumers fresh peach in the produce supply chain was designed and its effectiveness on quality preservation was tested. The master packaging system was designed to contain 6 individual polypropylene film (PP, $30{\mu}m$ thickness) packages of 300 g peach fruit inside $35{\mu}m$ thick low density polyethylene (LDPE) bag located in a corrugated paperboard box. As a variable to attain the desired package atmosphere around the fruit during cold storage and subsequent retail display at higher temperature, different numbers (1, 3 and 7) of microperforations in $59{\mu}m$ diameter were tested on the individual PP packages. As control treatment, six fruits were placed without wrapping in a corrugated paperboard box. During the storage at $5^{\circ}C$, the control and individual packages were periodically separated from the box or master package, moved to the simulated retail shelf conditions of $20^{\circ}C$ and then stored for 3 more days with package atmosphere and fruit quality being measured. The package with 7 microperforations was the best in the ability to attain beneficial MA of 6~10% $O_2$ and 11~19% $CO_2$ around the fruit during the chilled storage at $5^{\circ}C$ and simulated retail display at $20^{\circ}C$. Packages with smaller number of microperforations resulted in anaerobic atmosphere at the low temperature storage and/or the subsequent high temperature display. Compared to control, all the treatments with master packaging system gave better retention of fruit firmness with significantly less weight loss.

  • PDF

The Cuttings of the Genus Lespedeza (싸리류(類)의 삽목시험(揷木試驗))

  • Han, Young Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 1973
  • This study was investigated the methods of vegetative propagation for new Lespedeza varieties. Experimental matterials were used 6 Lespedeza species; L. maximowiczii, L. cyrtobotrya, L. angustifolioides, L. bicolor, L. maximowiczii var. tomentella, and L. japonica var. intermedia. In April a year branches were cut 15-20cm length and 3-4mm thickness and planted in sand bed (depth 150cm) to be sterilized by the 0.1% solution of Uspulun. And then the cutting beds were irrigated and shaded. The results are as follows. 1. The rooting rates of the cuttings could be found so variable among varieties from 69% of L. maximowiczii var. tomentella to 50.3% of L. japonica var. intermedia. 2. The growth performance showed statistically significant difference at 1% level among varieties. L. maximowiczii was the best, while L. japonica var. intermedia showed the wrost growth performance of them. 3. The average number of roots with more than 5 cm length per stock was revealed statistically significant difference at the 1% level among varieties from the greatest number of 6.4 of L. maximowiczii var. tomentella to the smallest number of 2.3 of L. japonica var. intermedia. 4. Total average length of the roots per stock was statistically significant so different at 1% level from the longest 279.8cm of L. maximowiczii var. tomentella to the shortest 41.1cm of L. japonica var. intermedia. 5. The average ndules with more than 1 mm in diameter per stock was statistically significant so different at 1% level among varieties from the greatest number of 34.4 of L. maximowcizii to the smallest numqer of 4.6 of L. japonica var. intermedia.

  • PDF

Structural Design Optimization of Gageocho Jacket Structure Considering Unity Check (가거초 자켓 구조물의 허용응력비를 고려한 구조 최적설계)

  • Kim, Byungmo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.205-212
    • /
    • 2021
  • Offshore jacket structures generally comprise steel members, and the safety standard for jacket structures typically focuses on the steel components. However, large amounts of concrete grouting is filled in the legs of the Gageocho jacket structure to aid in the recovery from typhoon damage. This paper proposes a safe and lightweight design for the Gageocho ocean research station comprising steel members instead of large amounts of concrete reinforcement in the legs. Based on the actual design, the structural members are grouped according to their functional roles, and the inner diameter of the cross-section in each design group is defined as a design variable. Structural optimization is carried out using a genetic algorithm to minimize the total weight of the structure. To satisfy the conservative safety standards in the offshore field, both the maximum stress and the unity check criteria are considered as design constraints during optimization. For enhanced safety confidence, extreme environmental conditions are assumed. The maximum marine attachment thickness and the section erosion in the splash zone are applied. Additionally, the design load is defined as the force induced by extreme waves, winds, and currents aligned in the same direction. All the loading directions surrounding the structure are considered to design the structure in a balanced and safe manner. As a result, compared with the current structure, the proposed structure features a 45% lighter design, satisfying the strict offshore safety criteria.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Fabrication of Visible Light Transmittance-variable Smart Windows Using Phase Retardation Films (위상지연 필름을 이용한 가시광 투과율 가변형 스마트윈도우 제작)

  • Kim, Il-Gu;Yang, Ho-Chang;Park, Young-Min;Hong, Young Kyu;Lee, Seung Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.29-34
    • /
    • 2022
  • A fabrication process of smart windows with controllable visible light transmittance by using retardation films is proposed. The 𝛌/4-phase retardation films that can convert a linearly polarized light into circularly polarized light are achieved through photo-alignment layers and reactive mesogen (RM) coating process. Two sheets of the fabricated retardation films with different orientation angles induced to light transmission mode (45°/-45°) and light blocking mode (45°/45°) for visible wavelength. We evaluated retardation characteristics according to the thickness of the birefringent RM material and found out the optimal condition for the film with 𝚫n·d of 𝛌/4-phase. The proposed structure of the smart window exhibited the light blocking ratio improved by more than 20% in the visible wavelength (380 nm to 780 nm). Finally, it was confirmed that the feasibility of the window structure by applying to a prototype for a smart window with a size of 150 × 150 mm2.