• Title/Summary/Keyword: Variable Stiffness Mechanism

Search Result 25, Processing Time 0.025 seconds

Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator (가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석)

  • Lee, Jeongsu;Cho, Youngjun;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

Parametric Study on the tendency of Stiffness Variation using Variable Stiffness Mechanism (변수변화에 따른 가변강성 메커니즘의 강성변화 경향성에 관한 연구)

  • Ham, KiBeom;Han, Jiho;Jeon, JongKyun;Park, YongJai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.750-758
    • /
    • 2016
  • In general, a system can be stable when it is designed with a rigid material. However, the use of a rigid system can be limited, such as grasping a glass or using a small surgical instrument. To resolve this limitation, a variable stiffness mechanism was developed using a flexible material. Previous research verified the variable stiffness mechanism where flexible segments and rigid segments were connected alternately in series. However, research into the design parameters of the variable stiffness structure is needed to satisfy the desired stiffness. Therefore, a variable stiffness structure was tested by varying the design parameters to confirm the trend of the stiffness variation. When the radius of the structure becomes larger, the stiffness increases. The stiffness increased with decreasing length of the flexible segments. Under the same design parameters, the length of the flexible segments had a greater effect on the stiffness than the length of the rigid segments. In addition, the stiffness was estimated using the pseudo rigid body model and was compared with the experimental results. This parametric study can be used as a design guideline for designing the variable stiffness mechanism to satisfy the desired stiffness.

Development of Variable Stiffness Soft Robot Hand for Improving Gripping Performance (그리핑 성능 향상을 위한 가변강성 소프트 로봇 핸드 개발)

  • Ham, KiBeom;Jeon, JongKyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.47-53
    • /
    • 2018
  • Various types of robotic arms are being used for industrial purposes, particularly with the small production of multi-products, and the importance of the gripper, which can be used in industrial fields, is increasing. This study evaluated a variable stiffness mechanism gripper that can change the stiffness using the nonlinearity of a flexible material. A prototype of the gripper was fabricated and examined to confirm the change in stiffness. The previous gripper was unable to grip objects in some situations with three variable stiffness mechanism. In addition, these mechanisms were not balanced and rarely rotated when the object was gripped. Therefore, a new type of gripper was needed to solve this problem. Inspired by the movements of the human palm and Venus Flytrap, a new type of a variable stiffness soft robot hand was designed. The possibility of grasping could be increased by interlocking the palm folding mechanism by pulling the tendon attached to the variable stiffness mechanism. The soft robotic hand was used to grasp objects of various shapes and weights more stably than the previous variable stiffness mechanism gripper. This new variable stiffness soft robot hand can be used selectively depending on the application and environment to be used.

Electrically-induced actuation for open-loop control to cancel self-excitation vibration

  • Makihara, Kanjuro;Ecker, Horst
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.189-206
    • /
    • 2012
  • This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variable-stiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electrically-induced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Small-Sized Variable Stiffness Actuator Module Based on Adjustable Moment Arm (가변 모멘트 암 기반의 소형 가변 강성 액추에이터 모듈)

  • Yu, Hong-Seon;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1195-1200
    • /
    • 2013
  • In recent years, variable stiffness actuation has attracted much attention because interaction between a robot and the environment is increasingly required for various robot tasks. Several variable stiffness actuators (VSAs) have been developed; however, they find limited applications owing to their size and weight. For realizing their widespread use, we developed a compact and lightweight mini-VSA. The mini-VSA consists of a control module based on an adjustable moment arm mechanism and a drive module with two motors. By controlling the relative motion of cams in the control module, the position and stiffness can be simultaneously controlled. Experimental results are presented to show its ability to change stiffness.

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF