• 제목/요약/키워드: Variable Rotating Speed

검색결과 76건 처리시간 0.031초

MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성 (Performance of Squeeze Film Damper Using Magneto-Rheological Fluid)

  • 안영공;양보석;신동춘;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

가변안내깃 설치각이 다단 축류압축기 성능에 미치는 영향 (Effects of Variable Guide Vane Setting Angle on the Performance of Multi-Stage Axial Compressor)

  • 박준영;서정민;임형수;최범석;최태우;최재호
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.9-18
    • /
    • 2016
  • 일반적으로 다단 축류압축기는 부분 부하 조건에서 충분한 운전영역을 확보하기 위해 가변안내깃을 이용한다. 본 연구에서의 해석대상인 다단 축류압축기는 입구에서의 안내깃과 함께 1단과 2단 정익을 가변안내깃으로 하여 운전영역을 확보한다. 따라서 본 연구에서는 정격회전수의 70%와 90% 회전수 조건에서의 가변안내깃의 설치각이 다단 축류압축기의 성능에 미치는 영향에 대해 조사하였다. 다단 축류압축기의 성능은 3차원 정상상태 및 비정상상태 수치해석을 이용하여 확보하였다. 각 해석기법을 통해 확보한 결과를 비교하였으며 내부유동장의 특성을 파악하였다.

대형 입형펌프 운전 중 공진현상의 진동 저감을 위한 스티프너 설계 및 성능 검증 (Design of Stiffeners for Reducing Resonant Vibration of Large Vertical Pumps and Its Performance Verification)

  • 류길수;봉석근;한승우;노철우;이동민;이정우;박준홍
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.65-72
    • /
    • 2013
  • This case study presents a practical method to reduce resonant vibration of large vertical pumps. The pumps are driven at 400 rpm rated speed by induction motor. The vibration was not significantly large when operated at this rated speed. Large vibration was occurred when the pump was operated below the rated speed for flow control. Due to the large vibration resonance, variable speed operation of the pump was not possible for several months at worst cases. To find an efficient vibration control method, the flexural responses of pumps for both normal and transient operations were measured. The measured modal characteristics were compared with those of finite element analysis. When the pump was operated at a specific rpm, the natural mode whose resonance frequency is twice the rotating angular speed induced the large vibration. The retrofit utilizing stiffeners to reduce this resonant vibration were performed. Effects of designed stiffeners on reducing vibration were validated through tests after actual installation.

가변 입구 안내익과 블리드 공기 스케줄에 따른 터보팬 엔진에서의 천이 성능특성에 관한 수치연구 (A Numerical Study on Transient Performance Behavior of a Turbofan Engine with Variable Inlet Guide Vane and Bleed Air Schedules)

  • 김상조;손창민;김귀순;김명호;민성기
    • 한국추진공학회지
    • /
    • 제19권5호
    • /
    • pp.52-61
    • /
    • 2015
  • 본 연구에서는 가변 입구 안내익과 블리드 공기 스케줄에 따른 터보팬 엔진에서의 천이 성능특성을 수치적으로 분석하였다. 대상 엔진으로 저 바이패스비 혼합 흐름 터보팬 엔진을 선정하였다. 압축기 가변 입구 안내익에 따른 성능 변화를 고려하기 위해 평균 반경 해석법을 이용하여 압축기 성능성도를 도출하고 엔진 해석 프로그램에 입력하였다. 정상상태 조건에서 축류 압축기 서지마진 10%를 만족하도록 회전속도에 따른 가변 입구 안내익과 블리드 공기 스케줄을 각각 도출하였다. 도출된 스케줄을 이용하여 엔진 천이 성능해석을 수행하였다. 엔진 천이 성능해석 수행 결과 가변 입구 안내익을 사용하는 경우가 블리드 공기를 사용하는 경우보다 천이과정에서 높은 서지마진과 낮은 터빈 입구 온도를 보였다.

사판식 유압 피스톤모터의 성능특성 분석 (Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor)

  • 이용범;김광민
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1441-1446
    • /
    • 2012
  • 유압피스톤모터는 정압베어링부분의 마찰손실과 용적손실, 기구적 운동부분의 마찰손실, 오일의 관로저항에 의한 압력저하, 압축성에 의한 체적손실 그리고 하우징 오일 처닝(churning) 손실 등이 있다. 이러한 손실 중에서 일정한 틈새의 유막(oil film, $8{\sim}15{\mu}m$)으로 고속 회전하는 피스톤 슈(piston shoe)와 슈 플레이트(shoe plate) 사이 정압베어링 부분의 마찰 및 용적손실이 유압모터의 전체효율을 좌우 한다. 본 연구에서는 최고압력 35MPa, 최고회전수 2500rpm, 배재용적 320cc/rev급 2속(2-speed) 초대형 굴삭기의 주행모터용 유압피스톤모터를 대상으로 정압베어링비가 유압모터의 전 효율에 미치는 영향을 실험적으로 분석하였다.

Simulations of the Dynamic Load in a Francis Runner based on measurements of Grid Frequency Variations

  • Ellingsen, Rakel;Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.102-112
    • /
    • 2015
  • In the Nordic grid, a trend observed the recent years is the increase in grid frequency variations, which means the frequency is outside the normal range (49.9-50.1 Hz) more often. Variations in the grid frequency leads to changes in the speed of rotation of all the turbines connected to the grid, since the speed of rotation is closely related to the grid frequency for synchronous generators. When the speed of rotation changes, this implies that the net torque acting on the rotating masses are changed, and the material of the turbine runners must withstand these changes in torque. Frequency variations thus leads to torque oscillations in the turbine, which become dynamical loads that the runner must be able to withstand. Several new Francis runners have recently experienced cracks in the runner blades due to fatigue, obviously due to the runner design not taking into account the actual loads on the runner. In this paper, the torque oscillations and dynamic loads due to the variations in grid frequency are simulated in a 1D MATLAB program, and measured grid frequency is used as input to the simulation program. The maximum increase and decrease in the grid frequency over a 440 seconds interval have been investigated, in addition to an extreme event where the frequency decreased far below the normal range within a few seconds. The dynamic loading originating from grid frequency variations is qualitatively found by a constructed variable $T_{stress}$, and for the simulations presented here the variations in $T_{stress}$ are found to be around 3 % of the mean value, which is a relatively small dynamic load. The important thing to remember is that these dynamic loads come in addition to all other dynamic loads, like rotor-stator interaction and draft tube surges, and should be included in the design process, if not found to be negligible.

Hydraulic Model Experiment on Circulation in Sagami Bay, Japan (IV) -Time-Varying States of Flow Pattern and Water Exchange in Baroclinic Rotating Model-

  • Choo, Hyo-Sang;Takasige Sugimoto
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권1호
    • /
    • pp.57-73
    • /
    • 1999
  • Baroclinic hydraulic model experiments on the time-varying states of the flow pattern and water exchange in Sagami Bay were carried out based on quasi-steady state experiments on the flow pattern. For the model experiments, density changes as well as time changes in the volume transport of the upper layer were executed to investigate the flow response of the bay in the case of a sudden inflow of low density water and variable volume transport into the Sagami Bay. The results of the model experiments showed that when the volume transport was increased frontal eddies or frontal wave streamers from the Kuroshio Through Flow were transferred to the inner part of the bay along with cyclonic circulation in the bay. In addition, density boundary currents appeared and flowed along the eastern boundary of the bay. As the upper layer density decreased, frontal eddies, frontal streamers and coastal boundary density currents occurred and proceeded along the eastern boundary of the bay at a high speed.

  • PDF

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

PEM 연료전지용 터보 블로워의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability Test for PEM Fuel Cell Turbo-blower)

  • 이용복;이희섭;정진택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.37-43
    • /
    • 2008
  • The durability test of turbo-blower for PEM fuel cell is very important process of BOP development. It is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the air supply system to increase the reliability and to reduce the lifetime cost. In this study, turbo-blower supported by oil-free bearing is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The impeller of blower was adopted mixed type of centrifugal and axial. So, it has several advantages for variable operating condition. The turbo-blower test results show maximum parasitic power levels below 1.67kW with the 30,000 rpm rotating speed, the flow rate of air has maximum 163SCFM(@PR1.1). For proper application of FCV, these have to durability test. This paper describes the experiment for confirming endurance and stability of the turbo-blower for 500 hours.