• Title/Summary/Keyword: Variable Focal Length

Search Result 16, Processing Time 0.03 seconds

Digital Variable Focal Liquid Lens (초점 조절이 가능한 디지털 유체 렌즈)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.557-560
    • /
    • 2010
  • We have designed a digital variable-focal-length liquid lens by using 4-bit actuators. Each bit actuator consists of 1, 2, 4, and 8 unit actuators, squeezes discrete fluidic volume of $2^4$ different levels into the lens The 4-bit digital actuation mode ($b_4b_3b_2b_1$) affords $2_4$ different lens curvatures and focal lengths. The on/off control of the bit actuators helps in solving the main problem associated with analog liquid lenses, i.e., precise control of the pressure or volume of the fluid for changing the lens curvature and focal length. Experimentally, it has been found that the 4-bit actuators allow 0.074 nl (${\pm}0.02\;nl$) of the given fluid per bit to enter the lens and help in increasing the focal length from 3.63 mm to 38.6 mm in $2^4$ different levels; no high-cost controllers are required for precise control of the pressure or volume in this case. Therefore, the present digital liquid lens is more suitable to integrated optical systems by reducing additional component for pressure and volume control.

Design of focal length of Moire lens according to lens phase pattern (렌즈의 위상 패턴에 따른 무아레렌즈의 초점거리 설계)

  • Park, Sungwoong;Kim, Youngrok;Min, Sung-wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.144-145
    • /
    • 2021
  • Variable range of focal length of Moiré lens is designed to change the phase pattern, which is varifocal lens system using two thin layers with Moiré pattern and suitable to applied to AR/VR system because of the relatively simple structure, large aperture size, and wide variable range. We analyze the change of focal length region according to the phase pattern and verify the design to make the prototype patterns using DOE.

  • PDF

Variable-focus Liquid Lens Based on a Laterally-integrated Thermopneumatic Actuator

  • Lee, June Kyoo;Park, Kyung-Woo;Lim, Geunbae;Kim, Hak-Rin;Kong, Seong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • We report a focal-length tunable liquid lens based on thermopneumatically driven fluidic pressure. The fluidic pressure is generated by deformation of an elastomeric diaphragm induced by thermopneumaticity from a laterally integrated microheater sealed within an air chamber. The pressure is transmitted by a confined liquid to a lens diaphragm through an internal fluid channel. The liquid filling under the lens diaphragm functions as a liquid lens for dynamic focusing with properties depending on the curvature of the deformed diaphragm. The diaphragm area of the air chamber is designed five times larger than that of the lens cavity to yield high focal-length tunability by amplified deflection of the lens diaphragm. With our method, we achieved excellent focal-length tunability from infinity (without an input current) to 4 mm (with an input current of 12 mA) with a lens aperture diameter of 2 mm.

Experimental Study on Micro PIV Measurement using a Micro Liquid Lens (마이크로 유체렌즈를 이용한 마이크로 PIV 측정에 관한 실험적 연구)

  • Jeong, S.R.;Dang, T.D.;Choi, J.H.;Kim, G.M.;Park, C.W.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.22-28
    • /
    • 2010
  • In the present study, we performed the velocity field measurement in a microchannel using a focal length variable micro liquid lens. The liquid lens is used as a beam expander in a micro-PIV system to acquire the scatter image of the seeded particle. A thin film-type micro liquid lens was made of PDMS material and it was attached on top of the 700-micron-wide working fluid supply channel trench. As a result, the focal length and contact angle of the liquid lens changed with variations in applied pressure.

A Study on Adaptable Non-contact Shape Inspection System (적응형 비접촉 형상 검사에 관한 연구)

  • Kang, Young-June;Park, Nak-Gyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.74-80
    • /
    • 2005
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length.

Design and Fabrication of Variable Focusing Lens Arrays (VFLA) using Liquid Crystal for Integral photography(IP)

  • Hwang, Yong-Seok;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1034-1037
    • /
    • 2003
  • In this work, Integral photography with variable focusing lens arrays is proposed. We fabricate two-dimensional liquid crystal lens arrays using cohesion of UV curable polymer and lithography. Applied voltage to the cell alters the effective refractive index of the liquid crystal layer and results in a change of the focal length. By adjusting the focal length, synchronized elemental image array for real or virtual mode is integrated in front of or behind the lens array.

  • PDF

Optimization of Optics Design for 3D Laser Scanner (3차원 부품 레이저 용접용 스캐너 광학 최적설계)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, we present the results of our research to perform 3D laser scanning functions by adding a focusing lens to a conventional 2D laser scanner. For the optical design, the ray-tracing technique was used along with a total of four lenses as the variable incident focusing lens, the collimating lens, and the F-Theta lens. As design variables, the curvature of the incident focusing lens (Lens #1) was assumed to be us, l mm and sumed mm, and the incident angles were set at 0cidenus, l. In addition, the distance between the focusing lens and the collimating lens was set to vary from 5 mm to 15 mm. When the incident focal length was varied from 5 mm to 15 mm, the exit focal length was calculated to vary from 67.5 mm to 56.8 mm for the lens with R = 100 mm and from 108.5 mm to 99.0 mm for the lens with R = 150 mm. When the incident angle was 0°, the focal aberration was only slightly observable at 10㎛ in both the x- and y-direction. At 7.5° was the focal aberration of approximately 20~50㎛ was measured at 20㎛. To investigate the chromatic aberration of the designed optical device, the distortion of the focus was observed when the 550 nm beam was simulated on lens designed for a 980 nm wavelength.

New Gel-type Biomimetic Variable-focus Lens System (새로운 겔형 생체모방 가변초점 렌즈 시스템)

  • Seo, Jeong-Ho;Son, Hyung-Min;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1082-1088
    • /
    • 2010
  • In this paper, we propose a new gel-type biomimetic variable-focus lens system. The miniaturization of conventional lens system is limited due to the use of a set of glass lenses for adjusting the focal length. Biologically inspired by the focus adjustment mechanism of the human eye, a gel-type single lens system with variable-focus is presented. The proposed system consists of a gel-type lens, mechanical parts such as body, rotation ring, and winding-type SMA actuator. In addition, the proposed system is designed to operate with a simple and miniaturized mechanical structure using a new attachment and driving mechanism. The focusing performance of the proposed system is verified through a series of experiments and measurements of the shape of the lens using tomography.

The Variable Process of Visual Acuity for Artificial Myopia (인위적인 근시에서 시력의 회복과정)

  • Choi, Woon Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • Numerically compares a calculation about a variable process of visual acuity for a artificial myopia with previously the tested result. The calculation is used to the value of Gullstrand's theoretical eyes and a method of geometrical optics. The theoretical eye simplified a entrance pupil and retina. Optical lens and eye changed a equivalent lens. Refractive power of a equivalent lens is converted to focal length within theoretical eyes, and this was calculated about relation of a blur circle on the retina and visual acuity.

  • PDF

Development of Microlens Array for Maskless Lithography Application (Maskless lithography 응용을 위한 마이크로렌즈 어레이 개발)

  • Nam, Min-Woo;Oh, Hae-Kwan;Kim, Geun-Young;Seo, Hyun-Woo;Wei, Chang-Hyun;Song, Yo-Tak;Yang, Sang-Sik;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2009
  • A microlens array (MLA) was developed based on the wet-etched quartz substrate and coating of UV adhesive on the substrate for maskless lithography application. The developed MLA has the focal length of ${\sim}45\;{\mu}m$ and the spot size of ${\sim}1\;{\mu}m$. The spot size of the focused beam passing through the MLA was detected by CCD camera, and its intensity was monitored by beam profiler. Uniform spots with nearly identical intensities were observed on the focal plane when a beam passes through the fabricated MLA. The focal length was varied depending on thickness of the coated UV adhesive. The thicker the thickness of the UV adhesive was, the shorter the focal length of the MLA was. With a general mask aligner, UV beam focusing was tested onto photoresist (PR). The beams were well focused onto PR when UV passes through the MLA. Depending on the variable distances from the MLA, beam sizes onto PR were controlled. Even at high temperature for a long time, the performances of the MLA were not changed.

  • PDF