• Title/Summary/Keyword: Variable Flow

Search Result 1,304, Processing Time 0.027 seconds

A Study on the Flow-Rate Analysis of Variable Section Sweeping Auger (가변단면 Sweeping Auger의 유동량 해석에 관한 연구)

  • Choi, Kab-Yong;Oh, Tae-Il;Shin, Sung-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.131-134
    • /
    • 2009
  • 본 연구는 일체형 곡물 건조/저장 시스템 개발에 사용되는 Sweeping Auger의 성능 개선을 위하여 추진되었다. 이를 위하여 본 연구에서는 Variable Section Sweeping Auger를 제안하고 그 특성을 해석할 수 있는 수식모형을 개발하였다. 이를 통하여 곡물 건조 저장시스템의 성능개선에 이바지 하고자 한다.

  • PDF

A Study on Performance of a Variable-Speed Turboblower (가변속 터보블로워의 성능특성에 관한 연구)

  • Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Joon-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.379-384
    • /
    • 2003
  • A turbo blower directly driven by a variable-speed BLDC motor was designed and tested to investigate performance characteristics. Computational analysis and performance tests validated the design method for the present turbo blower. Experimental measurements showed that the blower has an enough stability margin. This paper gives an outline of design, computational flow analysis and performance test for aerodynamic performance of the blower

  • PDF

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

The Information Effect on Foreigner's Intraday in Stock Index Futures (주가지수선물에 있어 외국인의 하루중 정보효과에 관한 연구)

  • 신연수
    • The Journal of Information Technology
    • /
    • v.1 no.2
    • /
    • pp.181-193
    • /
    • 1998
  • The measure of public information flow developed here is the number of order frequency. In the first part of the analysis, I document the general pattern of public information, with an emphasis on the intraday arrival of information. Overall, I find that public information arrival is nonconstant Consistent with earlier studies, I find that information arrival exhibits an inverted U-shape pattern across intraday trading. Over the average trading day, the flow of public information increases throughout the morning hours and then falls over the period, between 3:00 P.M. and 3:05. The second part of my analysis focuse is the relation between the public information variable and measure of intraday order frequency, specifically insignificant effect. According to time flow in the intraday trading, although the number of insignificant effect is increasing moderately, the result is remarkable in light of the aggreate nature of the public information and order frequency variable employed. The foreigner's investor group changes homogenously.

  • PDF

Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine (무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능)

  • Ma Fuhua;Choi J.Y.;Yang Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

Numerical Design of Auto-Catalyst Substrate for Improved Conversion Performance Using Radially Variable Cell Density (변환효율 향상을 위한 횡방향 가변 셀밀도법을 사용한 자동차용 촉매변환기의 수치적 설계)

  • Jeong, Su-Jin;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1596-1607
    • /
    • 2000
  • The optimal design of auto-catalyst needs a good compromise between the pressure drop and flow uniformity in the substrate. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. But this method has not been examined its usefulness in terms of chemical behavior and conversion performance. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been used to evaluated the benefits of this method n the flow uniformity and conversion efficiency. The results showed that two cell combination of 93cpsc and 62 cpsc was the most effective for improved pressure drop and conversion efficiency due to balanced space velocity and efficient usage of geometric surface area of channels. It was also found that large temperature difference between the bricks in case that the edge of the frontal face of brick has too much lower cell density(less than 67% of cell density of the center of the brick). This study has also demonstrated that the present computational results show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of conventional 1-D adiabatic model by comparison with experimental results.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF

A Study on Evaluating of Voltage Stability Using the Line Flow Equation. (선로조류방정식 특성을 이용한 전압안정도 평가에 관한 연구)

  • Song, Kil-Young;Kim, Sae-Young;Kim, Yong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.797-799
    • /
    • 1996
  • This paper presents a simple method for evaluating of voltage stability using the line flow equation. Line flow equations($P_{ij}$, $Q_{ij}$) are comprised of state variable, $V_i$, ${\delta}_i$, $V_j$ and ${\delta}_j$, and line parameter, r and x. Using the feature of polar coordinate, these equations become one equation with two variables, $V_i$ and $V_j$. Moreover, if bus j is slack bus or generator bus, which is specified voltage magnitude, it becomes One equation with one variable $V_i$, that is, may be formulated with the second-order equation for $V_i^2$. Therefore, solutions are obtained with simple computation. Solutions obtained are used for evaluating of voltage stability through sensitivity analysis. Also, considering of reactive power source, method for evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF

DEVELOPMENT OF AN ORTHOGONAL DOUBLE-IMAGE PROCESSING ALGORITHM TO MEASURE BUBBLE VOLUME IN A TWO-PHASE FLOW

  • Kim, Seong-Jin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to measure the bubble size and volume in a two-phase boiling flow. The central-active contour model originally proposed by P. $Szczypi\'{n}ski$ and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour stability. The modified model is then applied to the algorithm to extract the object boundary. This improved central contour model could be applied to obscure objects using a variable threshold value. The extracted boundaries from each image are merged into a three-dimensional image through the developed algorithm. It is shown that the object reconstructed using the developed algorithm is very similar or identical to the real object. Various values such as volume and surface area are calculated for the reconstructed images and the developed algorithm is qualitatively verified using real images from rubber clay experiments and quantitatively verified by simulation using imaginary images. Finally, the developed algorithm is applied to measure the size and volume of vapor bubbles condensing in a subcooled boiling flow.