• Title/Summary/Keyword: Variable Excitation

Search Result 136, Processing Time 0.027 seconds

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Variable Switching Duty Control of Switched Reluctance Motor using Low-Cost Analog Drive (저가형 아날로그 구동장치를 이용한 Switched Reluctance Motor의 스위칭 Duty 가변제어)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2021
  • For accurate speed and current control in industrial applications, SRM (Switched Reluctance Motor) is very important to synchronize the stator phase excitation and rotor position in the drive due to its nature. In general, position sensors such as encoder and resolver are used to generate rotational force by exciting the stator winding according to the rotor position and to control the motor by using speed and position information. However, for these sensors, 1) the cost of the sensors is quite large in terms of price, so the proportion of the motor system to the total system cost is high. 2) In terms of mechanical, position sensors such as encoders and resolvers are attached to the stator to increase the size and weight. In conclusion, in order to drive the SRM, control based on the rotor position information should be basically performed, and it is important to design the SRM driving system according to the environment in consideration of the application field. Therefore, in this paper, we intend to study the driving and control characteristics of SRM through variable switching duty control by designing a low-cost analog driving device, deviating from the general control system using the conventional encoder and resolver.

Turbo FLASH NRI Using Optimized Flip Angle Pattern: Application to Inversion-Recovery T1-Weighted Imaging (최적화된 Flip Angle Pattern을 사용한 Turbo FLASH MRI: Inversion-Recovery T1-Weighted Imaging에의 응용)

  • Oh, C.H.;Choi, H.J.;Yang, Y.J.;Lee, D.R.;Ryu, Y.C.;Hyun, J.H.;Kim, S.R.;Yi, Y.;Jung, K.J.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.55-56
    • /
    • 1998
  • The 3-D Fast Gradient Echo (Turbo FLASH, Turbo Fast Low Angle Shot) sequence is optimized to achieve a good T1 contrast using variable excitation flip angles. In Turbo FLASH sequence, depending on the contrast preparation scheme, various types of image contrast can be established. While proton density contrast is obtained when using a short repetition time with a short echo time and small flip angles, T1 or T2 weighting can be obtained with proper contrast preparation sequences applied before the above proton density Turbo FLASH sequence. To maximize the contrast to noise ratio while retaining a sharp impulse response (smooth frequency domain response), the excitation flip-angle pattern is optimized through simulation and experiments. The TI (the delay after the preparation sequence which is a 180 degree inversion RF pulse in the IR T1 weighted imaging case), TD (the delay time between the Turbo FLASH sequence and the next preparation), and TR are also optimized fur the best image quality. The proposed 3-D Turbo FLASH provides $1mm\times1mm\times1.5mm$ high resolution images within a reasonable 5-8 minutes of imaging time. The proposed imaging sequence has been implemented in a Medison's Magnum 1.0T system and verified through simulations as well as human volunteer imaging. The experimental results show the utility of the proposed method.

  • PDF

Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition (제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

FIRST DETECTION OF 22 GHZ H2O MASERS IN TX CAMELOPARDALIS

  • Cho, Se-Hyung;Kim, Jaeheon;Yun, Youngjoo
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.293-302
    • /
    • 2014
  • Simultaneous time monitoring observations of $H_2O$ $6_{16}-5_{23}$, SiO J = 1-0, 2-1, 3-2, and $^{29}SiO$ ${\upsilon}=0$, J = 1-0 lines are carried out in the direction of the Mira variable star TX Cam with the Korean VLBI Network single dish radio telescopes. For the first time, the $H_2O$ maser emission from TX Cam is detected near the stellar velocity at five epochs from April 10, 2013 (${\phi}=3.13$) to June 4, 2014 (${\phi}=3.89$) including minimum optical phases. The intensities of $H_2O$ masers are very weak compared to SiO masers. The variation of peak antenna temperature ratios among SiO ${\upsilon}=1$, J = 1-0, J = 2-1, and J = 3-2 masers is investigated according to their phases. The shift of peak velocities of $H_2O$ and SiO masers with respect to the stellar velocity is also investigated according to observed optical phases. The $H_2O$ maser emission occurs around the stellar velocity during our monitoring interval. On the other hand, the peak velocities of SiO masers show a spread compared to the stellar velocity. The peak velocities of SiO J = 2-1, and J = 3-2 masers show a smaller spread with respect to the stellar velocity than those of SiO J = 1-0 masers. These simultaneous observations of multi-frequencies will provide a good constraint for maser pumping models and a good probe for investigating the stellar atmosphere and envelope according to their different excitation conditions.

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

Study on the Design Process to minimize the Weight of the Damping Material (제진재 경량화를 위한 설계 프로세스 연구)

  • Kim, Ki-Chang;Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • Sound packages and damping materials have been widely applied on the floor to decrease the interior noise of a vehicle. Based on the previous researches on the low-noise vehicles, weight optimization through minimization of damping material usage is required while decreasing mid and high frequency range noise by application of sound packages. This paper describes the analysis process of robust design of vehicle body structure before applying damping materials and focuses on the analysis and test process of the location optimization at the stage of damping material application. A vibration experiment for the analysis of floor panel velocity with respect to the excitation of suspension attachment parts at the underfloor of a vehicle is performed. And through the improvement correlation between FEA and TEST, a design guide to optimize damping materials application in the early design stage is proposed. A research on vibration damping steel sheets and liquid acoustic spray on deadener(LASD) is performed to minimize manufacturing time and to minimize the space for pre-existing asphalt damping materials. As results of this study, panel stiffness is achieved through curved surface panel and bead optimization. And test baseline of optimum design is suggested through damping material optimization. And finally, through re-establishing the analysis process for vibration reduction of vehicle floors and lightweight design of damping materials, it is possible to design damping materials efficiently in the preceding stage of design.

Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank (정사각형 수조 진동대실험에 대한 상관해석)

  • Son, Il-Min;Kim, Jae-Min;Choi, Hyung-Suk;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a post-correlation analysis for shaking table test of square water storage tank is presented for the use of advances in earthquake-resistant design of liquid storage tank. For this purpose, the ANSYS CFX program is selected for the CFD analysis. Sensitivity analysis for resonant sloshing motion in terms of grid size and turbulence model suggested that (1) horizontal grid size as well as vertical grid size is a key variable in the sloshing analysis, and (2) the SST turbulence model is best for the sloshing analysis. Finally, correlation analyses for a non-resonant harmonic input and scaled earthquake excitation of the El Centro (1940) NS component are carried out using the grid and turbulence model established through the post-correlation analysis for the resonant motion. As a result, sloshing time histories by the CFD analysis agreed very well with the test results.