• Title/Summary/Keyword: Variable Damper

Search Result 133, Processing Time 0.032 seconds

Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake (MR Brake를 이용한 공압근육매니퓰레이터의 지능제어)

  • Ahn, Kyoung-Kwan;Thanh, T.D.C.;Ahn, Young-Kong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF

Effect of Multi-Swirl Injector on Acoustic Damping in Model Combustion Chamber (모형 연소실에 장착된 다중 스월인젝터의 음향학적 감쇠 효과)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.198-203
    • /
    • 2007
  • The aim of this study is to suppress the high-frequency combustion instability by acoustic absorption through swirl injector with variable air core length. In the previous study, acoustic damping effects on air core (length, shape, volume) and location of the injector in a model chamber were investigated. Through previous results, our study has advanced to the effect of tuned multi-injectors. From the experimental data, it is proved that increasing of numbers of injectors mounted each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed each anti-node point of model chamber, damping effect of tuned injectors with multi modes is well agreed with it of tuned injectors with single mode.

  • PDF

Analysis of Drifter's Critical Performance Factors Using Its Hydraulic Analysis Model (드리프터 유압 해석모델을 활용한 성능격차 유발 인자 접근 사례)

  • Noh, Dae-Kyung;Seo, Jaho;Park, Jin-Sun;Park, James;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • Drifter is equipment which is hard to localize. Performance of prototype hasn't performed well compared to product of leading companies even though advanced foreign firm's product were dead copied. This study shows cases of approaching the factor which produces performance gap through drifter hydraulic analysis model which is core component of rock drill. Progression of procedure is following. 1) Securing reliability of the analysis model by comparing impact test result with analysis result. 2) Drawing a graph which indicates performance gap between prototype and drifter of advanced foreign firm by using analysis model. 3) Approaching the factor which produces performance gap with analysing variable of the analysis model. Software used for this analysis is SimulationX.

A Study on Towing Characteristics of Barge Considering Wind Force (풍하중에 의한 바지선의 예인 시 거동특성 변화에 관한 연구)

  • Nam, Bo Woo;Choi, Young-Myoung;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • This paper presents the results of a numerical study on the towing characteristics of a barge under various wind conditions. First, stability criteria, including the wind force, were derived based on the linear motion equations of a towed vessel. The effect of the wind force on the towing stability was investigated using stability criteria. Next, towing simulations were carried out using a nonlinear time-domain simulation method. In this case, the towline was modeled as a simple spring-damper, and the wind force was computed using the wind coefficient from CFD calculations. Simulations were conducted for a barge under a constant towing speed and constant wind speed conditions. The effect of the wind direction on the slewing motion was also observed. In addition, a series of numerical simulations using variable wind speeds were performed for the present barge with and without a skeg.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

A Study of Power Conversion System for Energy Harvester Using a Piezoelectric Materials (압전소자를 이용한 에너지 하베스터용 전력변환장치 연구)

  • An, Hyunsung;Kim, Young-Cheol;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1059-1065
    • /
    • 2017
  • In this paper, the energy harvester with a piezoelectric materials is modeled as the electric equivalent circuit, and performances of a standard DC method and a Parallel-SSHI method are verified through experiment under variable force and load conditions. Piezoelectric generator consists of mass, damper and spring constant, and it is modeled by electrical equivalent circuit with RLC components. Standard DC and Parallel-SSHI are used as power conversion methods, and standard DC consists of full-bridge rectifier and smoothing capacitor. Parallel-SSHI method is composed of L-C resonant circuit, zero-crossing detector and full-bridge rectifier. In case of simulation under $100k{\Omega}$ load condition, the harvested power is $500{\mu}W$ in Standard DC and $670{\mu}W$ in Parallel-SSHI, respectively. In experiment, the harvested power under $100k{\Omega}$ load condition is $420{\mu}W$ in standard DC and $602{\mu}W$ in Parallel-SSHI. Harvested power of Parallel-SSHI is improved by approximately 40% more than that of standard DC method.

Preliminary Study on Structural Optimization with Control Variables Using Equivalent Static Loads for Spring-damper Control Systems (등가정하중을 이용한 스프링-댐퍼 제어시스템 구조물의 최적설계에 관한 기초연구)

  • Yoo, Nam-Sun;Jung, Ui-Jin;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.619-627
    • /
    • 2014
  • An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method.

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF