• 제목/요약/키워드: Vaporization time

검색결과 88건 처리시간 0.025초

Nd:YAG 레이저의 근적외선과 자외선 펄스를 이용한 NiP 하드디스크 기층의 세척 (Cleaning of Nip Hard Disk Substrate Using Near-Infrared and Ultraviolet Irradiation of Nd:Yag Laser Pulses)

  • 김동식
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2000년도 추계학술발표대회 논문개요집
    • /
    • pp.23-26
    • /
    • 2000
  • This paper introduces a cleaning process for removing submicron-sized particles from NiP hard disk substrates by the liquid-assisted laser cleaning technique. Measurements of cleaning performance and time-resolved optical diagnostics are performed to analyze the physical mechanism of contaminant removal. The results reveal that nanosecond laser pulses are effective for removing the contaminants regardless of the wavelength and that a thermal mechanism involving explosive vaporization of liquid dominates the cleaning process.

  • PDF

고온고속류에서 기화를 고려한 연료액적의 분열(Breakup)기구 해석에 관한 연구 (A Study on Analysis of Breakup Mechanism of Vaporizing Fuel Droplet in High Temperature and Velocity Air Stream)

  • 김관철;황상순
    • 한국분무공학회지
    • /
    • 제3권3호
    • /
    • pp.1-13
    • /
    • 1998
  • In this study, an experimental study was performed to investigate the breakup mechanism of vaporizing droplet. A well-controlled experimental apparatus was used to study breakup mechanisms of a monodisperse stream of drops injected into a transverse high temperature and velocity air stream. The experiments gave information$ about the microscopic structure of the liquid drop breakup process, drop breakup regimes, and drop trajectories in high temperature flow region. The breakup time, drop acceleration and wavelength of surface instability wave were measured from a high-magnification and double spark photography. The two instability theories, i.e., Kelvin-Helmholtz instability and Rayleigh-Taylor instability, were estimated by comparing the calculated data with the measurements. The results showed that the breakup time in high temperature flow condition is shortened because the surface tension is decreased by the increase of gas temperature.

  • PDF

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok;Cha, Hyung-Ki;Kim, Duk-Hyeon;Min, Ki-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권1호
    • /
    • pp.101-105
    • /
    • 2004
  • The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

GMAW 용적이행 현상에 미치는 Ca의 영향 (Effect of Ca on Droplet Transfer Phenomena in GMA Welding)

  • 안영호;방국수;이종봉;장내웅
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.76-84
    • /
    • 1994
  • Droplet transfer modes due to welding conditions and the effect of Ca in welding wire on droplet transfer were investigated. Droplet transfer mode in CO$_{2}$ welding was classified into 2 modes, that is, short circuit and globular transfer, with increasing welding current and voltage. With increasing Ca content in wire, repulsive pressure due to vaporization of Ca was considerably increased. In short circuit transfer region, arcing time was increased and droplet transfer cycle was decreased, with increasing Ca content. In globular transfer region, welding condition for globular transfer was lower current region, with increasing Ca content.

  • PDF

일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구 (An Experimental Study on Flame Spread in an One-Dimensional Droplet Array)

  • 박정;신현동;코바야시 히데아키;니오카 다카시
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.

플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성 (Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process)

  • 이정구;;;최철진
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

TIRE-LII 기법을 이용한 매연 입자 크기에 관한 수치적 연구 (Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII))

  • 김정용;이종호;정동수;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1152-1157
    • /
    • 2004
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to see the effects of particle size, laser fluence on soot temperature characteristics and cooling behavior. Together with this, we focus on validating our simulation code by comparing with other previous results. Results of normalized LII signals obtained from various laser fluence conditions showed a good agreement with that of Dalzell and Sarofim's. It could be found that small particles cool faster at a constant laser fluence. And it also could be observed that vaporization is dominant process of heat loss during first 100ns after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

  • PDF

가솔린 직분식 인젝터의 분무 및 연소특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of Gasoline Direct Injector)

  • 신민규;박종호;유철호;이내현;최규훈
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.114-122
    • /
    • 1997
  • Nowadays, gasoline direct injection engines are being commercialized by virtue of improvement in control technology of spray, flow, air fuel ratio. The stratified charge type has the advantage of improving lean limit. The homogeneous type has the advantage of reducing engine-out hydrocabon emissions in the first 30 seconds after a cold start, in addition, improving transient air fuel ratio control. The vaporization and mixing if injected fuel with air has to e completed in a short time and the fuel film in cylinder and on piston has to be minimized. So, the flow and injection should be well controlled. This paper surveyed the spray characteristics of gasoline direct injection by using laser equipment and the combustion characteristics of the single cylinder engine using homogeneousas-mixture type gasoline direct injection.

  • PDF

미분탄 연소로에서 연소특성에 미치는 석탄특성에 관한 연구 (Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace)

  • 이병화;송주헌;이천성;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.737-747
    • /
    • 2009
  • This study is to investigate the effect of the moisture, volatile matter and particle size in the coal on the pulverized coal combustion characteristics using CFD. The results show that as the moisture content in coal increases, flame temperature decreases because of heat loss driven from latent heat of vaporization and reduction of heating value. As the volatile matter content in the coal increases, the temperature in the region near the burner increases, while the temperature in rear region of boiler decreases. The solution to keep the temperature in the rear region of boiler is suggested that particle size is needed to be larger. As the particle size increases, the temperature in the rear region of boiler show tendency to increase, for combustion burning time of coal could be extended.

A New Technology for Strengthening Surface of Forging Die

  • Xin Lu;Zhongde Liu
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.189-192
    • /
    • 2003
  • The Electro-thermal Explosion Coating (EEC) technique is a new surface treatment technology emerged in recent years. It uses an electrical discharge (with very high voltage from 5 to 30 kV or more) to produce a pulse current with large density inside the material to be deposited, the metal wire undergo the heating, melting, vaporization, ionization and explosion processes in a very short time (from tens ns to several hundreds ${\mu}s$), and the melted droplets shoot at the substrate with a very high velocity (3000 - 4500 m/s), so that the coating materials can be deposited on the surface of the substrate. Coatings with nano-size grains or ultra- fine grains can be formed because of rapid solidification (cooling rate up to $10^6-10^9\;k/s$). Surface of the substrate (about $1-5{\mu}m$ in depth) can be melted rapidly and coatings with very high bonding strength can be obtained.

  • PDF