• 제목/요약/키워드: Vaporization Rate

검색결과 100건 처리시간 0.03초

Performance Analysis of Carbon Canister for Reducing Evaporative Emissions in a Gasoline Automotive Engine

  • Chung, Yon-Jong;Cho, Gyu-Sang;Erickson, Paul A.;Han, Sung-Bin
    • 에너지공학
    • /
    • 제17권2호
    • /
    • pp.47-53
    • /
    • 2008
  • The objective of this paper is to clarify the flow characteristic, velocity distribution, pressure loss, and other such fundamental data for the canister during loading and purging. The amount of gas that is loaded increases as the loading rate is decreased and the time increased, and the purging improves as the purge rate is increased. The hydrocarbons that are purged initially have a high concentration, and a large amount is purged. During loading and purging, the temperature initially increases and decreases drastically due to heat generation and heat loss.

디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구 (A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine)

  • 김상암;왕우경
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측 (Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.12-18
    • /
    • 2017
  • 본 연구는 FDS의 액체증발모델을 이용하여 메탄올 풀 화재의 질량연소플럭스를 예측하고 복사분율, 평균흡수계수와 같은 연료의 열적 물성값에 따른 영향을 평가하였다. 해석대상 풀의 직경은 5 cm에서 200 cm 사이이며 해석영역의 크기는 풀의 크기에 비례하여 구성하였다. 해석에 적용된 기준격자는 격자민감도 평가를 통해 결정되었으며 약 750,000개의 격자를 적용하였다. 메탄올 풀 화재에 대해 FDS 액체증발모델을 적용하여 계산된 질량연소플럭스는 해석대상 풀 직경에 따른 천이특성을 잘 나타냈으며 전체적으로 실험편차 내에서 기존 실험과 일치된 결과를 예측하였다. 질량연소플럭스는 복사분율 증가에 따라 증가하는 경향을 보였으며 풀의 직경이 작은 경우 평균흡수계수의 영향이 상대적으로 크게 나타났다.

식품보장(食品保藏)과 수분활성(水分活性)에 관(關)한 연구(硏究) - 제 2 보 : 말쥐치육(肉)의 건조기구(乾操機構)와 수분활성(水分活性) - (Studies on Food Preservation by Controlling Water Activity - II. Dehydration Mechanism and Water Activity of Filefish Muscle -)

  • 한봉호;최수일;이종갑;배태진;박호구
    • 한국식품과학회지
    • /
    • 제14권4호
    • /
    • pp.342-349
    • /
    • 1982
  • 송풍식건조과정(送風式乾燥過程) 중의 말쥐치육의 건조기구(乾操機構)와 수분활성(水分活性)과의 관계를 검토하기 위하여 $47.5^{\circ}C$에서 풍속과 공기의 상대습도를 달리하여 실험한 결과를 요약하면 다음과 같다. 전체 건조과정은 정속건조기(定速乾燥期)와 감속건조기(減速乾燥期)로 구분되었다. 정속건조기(定速乾燥期)는 건조표면(乾燥表面)이 수분활성(水分活性) 1.0을 유지하는한 계속되었으며, 온도와 상대습도가 일정할 때 정속건조속도(定速乾燥速度)는 공기의 속도(速度)의 제곱근에 비례하였다. 감속건조기(減速乾燥期)는 건조기구(乾操機構)가 서로 다른 제(第)1 및 제(第)2감속건조기(減速乾燥期)로 구분되었다. 제(第)1감속건조기(減速乾燥期)는 모세관 응축수의 건조표면(乾燥表面)으로의 이동이 불충분한 불포화표면건조기(不飽和表面乾燥期)였으며, 이 때의 건조속도(乾燥速度)는 공기의 온도가 일정할 때 상대습도에 크게 좌우되었다. 제(第)1감속건조기(減速乾燥期)와 제(第)2감속건조기(減速乾燥期)의 변환점에서 표면경화현상(表面硬化現象)이 시작되었다. 상대습도의 변화에 따라 제(第)2감속건조기(減速乾燥期)가 시작될 때의 수분활성(水分活性)과 수분함량(水分含量)은 각각 다른 값을 나타내었다. 제(第)2감속건조기(減速乾燥期)는 다시 건조기구(乾操機構)를 달리하는 두 개의 건조기(乾燥期)로 구분되었다. 제(第)2감속건조기(減速乾燥期)의 1단계는 말쥐치육 내부의 모세관 응축수가 건조표면(乾燥表面)으로 확산, 증발하여 건조가 진행되었으며, 이때의 수분의 확산계수는 $47.5^{\circ}C$에서 $2.89{\cdot}10^{-10}m^2/sec$였다. 표면경화현상(表面硬化現象)은 말쥐치육의 수분활성(水分活性)이 0.7에 이를때까지 계속되었다. 제(第)2감속건조기(減速乾燥期)의 2단계는 수분활성(水分活性) 0.45에서 시작되었다. 이 때의 건조는 말쥐치육 내부에 다분자층(多分子層)으로 흡착(吸着)한 결합수의 건조표면(乾燥表面)으로의 확산, 증발에 의하여 진행되었다. 흡착수분(吸着水分)의 분자층(分子層)의 수는 4였으며, $47.5^{\circ}C$에서의 확산계수는 $4.38{\cdot}10^{-11}m^2/sec$였다.

  • PDF

Transient Analysis of Hybrid Rocket Combustion by the Zeldovich-Novozhilov Method

  • Lee, Changjin;Lee, Jae-Woo;Byun, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1572-1582
    • /
    • 2003
  • Hybrid rocket combustion has a manifestation of stable response to the perturbations compared to solid propellant combustion. Recently, it has revealed that the low frequency combustion instability about 10 Hz was occurred mainly due to thermal inertia of solid fuel. In this paper, the combustion response function was theoretically derived by use of ZN (Zeldovich-Novozhilov) method. The result with HTPB/LOX combination showed a quite good agreement in response function with previous works and could predict the low frequency oscillations with a peak around 10 Hz which was observed experimentally. Also, it was found that the amplification region in the frequency domain is independent of the regression rate exponent n but showed the dependence of activation energy. Moreover, the response function has shown that the hybrid combustion system was stable due to negative heat release of solid fuel for vaporization, even though the addition of energetic ingredients such as AP and Al could lead to increase heat release at the fuel surface.

소형 로켓 엔진 연소의 성능 예측 및 실험결과 평가 (Performance Prediction of Smal I Rocket Engine Combustion And Estimation of Experimental Results)

  • 박정;김용욱;김영한;정용갑;조남경;오승협
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.209-217
    • /
    • 1999
  • A model for depicting the rocket engine combustion process is presented and basic experiments near a design point are provided with a FOOF type of unlike impinging injector for RP-I fuel and liquid-oxygen. The model is based on the assumption that the vaporization is the rate-controlling combustion process. The effects of initial drop size and initial drop velocity are systematically shown and discussed. It is seen that in the midst of considered parameters the change of initial drop size is more sensitive to the performance. The proposed model describes qualitative trends of combustion process well despite of its simplicity.

  • PDF

Modeling of Atomization Under Flash Boiling Conditions

  • Zeng, Yangbing;Lee, Chia-Fon
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.44-51
    • /
    • 2002
  • This paper presents an atomization model for sprays under flash boiling conditions. The atomization is represented by the secondary breakup of a bubble/droplet system, and the breakup is considered as the results of two competing mechanisms, aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from pintle injector under flash boiling conditions. In the regimes this study considered, sprays are atomized by bubble growth, which produces smaller SMD#s than aerodynamic forces alone. With decreasing ambient pressures, the spray thickness, fuel vaporization rate and vapor radial penetration increases, and the drop size decreases. With increasing the fuel and ambient temperatures to some extent, the effect of flash boiling and air entrainment completely change the spray pattern.

  • PDF

A New Technology for Strengthening Surface of Forging Die

  • Xin Lu;Zhongde Liu
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.189-192
    • /
    • 2003
  • The Electro-thermal Explosion Coating (EEC) technique is a new surface treatment technology emerged in recent years. It uses an electrical discharge (with very high voltage from 5 to 30 kV or more) to produce a pulse current with large density inside the material to be deposited, the metal wire undergo the heating, melting, vaporization, ionization and explosion processes in a very short time (from tens ns to several hundreds ${\mu}s$), and the melted droplets shoot at the substrate with a very high velocity (3000 - 4500 m/s), so that the coating materials can be deposited on the surface of the substrate. Coatings with nano-size grains or ultra- fine grains can be formed because of rapid solidification (cooling rate up to $10^6-10^9\;k/s$). Surface of the substrate (about $1-5{\mu}m$ in depth) can be melted rapidly and coatings with very high bonding strength can be obtained.

  • PDF

열펌프를 이용한 건조시스템의 성능비교 연구 (A Comparative Study of Heat Pump Drying System Performances)

  • 김석광;이흥주
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1595-1602
    • /
    • 1992
  • An energy efficient drying system, utilizing a heat pump to recover the wasted heat with high efficiency is proposed. In conventional drying systems, over-heating occurs through a condenser as the same amount of air is provided into the evaportator and the condenser. In order to prevent the over-heating, part of the outlet air from the drying chamber must be bypassed to increase the rate of vaporization in the drying chamber without release of the heat from the system. Since a part of the heat in the condenser is used to heat the air during the drying process of the proposed system, a high drying efficiency and low SPC(Specific Power Consumption) could be obtained, Comparing the performances between the proposed heat pump and a conventional one, it was found that the drying efficiency of the proposed heat pump is higher than that of the conventional heat pump by an amount of 7-25%.

高溫表面의 冷却時 再水着 溫度 에 관한 硏究 (A Study of Rewetting Temperature in Cooling of Hot Surfaces)

  • 정문기;이영환;박종석
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.463-470
    • /
    • 1985
  • 본 논문에서는 가열관을 이용한 실험과 고온표면위에 놓인 물방울의 증발실험 을 통하여 재수착온도에 미치는 영향인자들을 분석하였으며, 이러한 분석결과를 토대 로 재수착온도상관식을 제시하였다.