• Title/Summary/Keyword: Vapor-liquid equilibrium

Search Result 107, Processing Time 0.022 seconds

Dimensionless Henry's Constant and Liquid-Vapour Equilibrium of Rosemary Aroma Compounds (로즈마리 향기성분의 기-액 평형과 무차원 헨리의 상수)

  • Yoon, Hyang-Sik;Jeong, Heon-Sang;Min, Young-Kyoo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.738-742
    • /
    • 2003
  • In order to estimate the mass transfer characteristics of absorption into alcohol solution of aroma compounds such as cineol, myrecene and pinene which are major aroma compounds of rosemary, dimensionless Henry's constant in 70% ethyl alcohol concentration and aroma concentration with different ethyl alcohol concentration were analyzed. From the results of measurement of vapor phase concentration of aroma compounds with different ethyl alcohol concentration, headspace concentrations of all of three aroma compounds were decreased as ethyl alcohol concentration increased. But those patterns were slightly different. Dimensionless Henry's constant equation (Hi) of cineol compound with ethyl alcohol concentration (x) was as follows: $Hi=(-5.75+x)/(-7017.6+257.3{\times}x)$. Dimensionless Henry's constants of cineol, myrecene and pinene in 1 atm, $25^{\circ}C$ and 70% ethyl alcohol concentration were 0.0058, 0.0182 and 0.0365, respectively.

The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System ((H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구)

  • Choi, Jeong Ho;Yun, Soung Hee;Kim, Yeong Eun;Yoon, Yeo Il;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the $CO_2$ loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonance spectroscopy (NMR) had been conducted to characterize the species distribution of the ($H_2O$-piperidine-$CO_2$) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in $H_2O$-piperidine-$CO_2$ system.

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Pervaporation of Aqueous iso-Propyl Alcohol Solution using NaA Zeolite Membrane (이소프로필 알코올 수용액의 NaA 제올라이트 분리막을 이용한 투과증발)

  • Lee Yong-Taek;Lee Hye-Ryeon;Ahn Hyo-Seong;Park In-Jun;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • The NaA zeolite membrane was synthesized on the surface of a porous ${\alpha}$-alumina support from the reaction solution composed of 1Si : 1Na : 4Na $6H_{2}O$. The pervaporation performance of the synthesized NaA zeolite membrane was investigated for the iso-propyl alcohol (IPA) aqueous solution according to the different feed concentration and the different operating temperature. The total flux decreases by increasing the feed IPA concentration and increases by increasing the temperature. The total flux was about $4.0{\times}10^3g/m^2\;hr\;at\;60^{\circ}C$ and 0.6 mole fraction of IPA and the separation factor was $1.8{\times}10^7\;at\;60^{\circ}C$ and 0.8 mole fraction of IPA. The separation performance of water through the NaA membrane was found to be superior to that obtainable with a distillation process just by comparison of the vapor-liquid equilibrium data.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.

Absorption of Carbon Dioxide into Aqueous Potassium Salt of Serine (Serine 칼륨염 수용액의 이산화탄소 흡수특성)

  • Song, Ho-Jun;Lee, Seung-Moon;Lee, Joon-Ho;Park, Jin-Won;Jang, Kyung-Ryong;Shim, Jae-Goo;Kim, Jun-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.505-514
    • /
    • 2009
  • Aqueous potassium salt of serine was proposed as an alternative $CO_2$ absorbent to monoethanolamine (MEA) and its $CO_2$ absorption characteristics were studied. The experiment has been conducted using screening test equipment with NDIR type gas analyzer and vapor-liquid equilibrium apparatus. $CO_2$ absorption/desorption rate and net amount of $CO_2$ absorbed in cyclic process are the criteria to assess the $CO_2$ absorption characteristics in this study. Effective $CO_2$ loading of potassium salt of serine and MEA are 0.425 and 0.230 respectively. Cyclic capacities are 0.354 and 0.298 for potassium salt of serine and MEA. The absorption rate of the potassium serinate decreased sharply at $CO_2$ loading is 0.1 and were maintained approximately at half of MEA. To enhance the absorption rate of aqueous potassium salt of serine, small quantities of rate promoters, namely piperazine and tetraethylenepentamine were blended, so that rich $CO_2$ loading were increased by 13.7% and 18.7% respectively. The rich $CO_2$ loading of potassium salt of serine was 29.2% and 35.0% higher than those of aqueous sodium and lithium salt of serine, respectively. The absorption rate of potassium salt of valine and isoleucine which have similar molecular structures to serine were lower than that of serine because of the presence of bulky side group. Precipitation phenomena during $CO_2$ absorption were discussed by the aid of literatures.