• 제목/요약/키워드: Vapor synthesis

검색결과 390건 처리시간 0.031초

Synthesis of Carbon Nanotubes by Using Inductively Coupled Plasma Chemical Vapor Deposition at Low Temperature

  • Kim, Young-Rae;Jang, In-Goo;Cho, Hyun-Jin;Jeon, Hong-Jun;Cho, Jung-Keun;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.768-771
    • /
    • 2007
  • Carbon nanotubes (CNTs) were synthesized by inductively coupled plasma CVD at $450^{\circ}C$. CNTs were grown on the 1-nm-thick Fe-Ni-Co with $C_2H_2$ and $H_2$ at different pressures and plasma powers. CNTs were grown longer in height as the $H_{\alpha}/CH$ ratios became lower by decreasing plasma powers and increasing growth pressures.

  • PDF

RF 플라즈마 CVD법에 의한 다이아몬드 박막의 합성 (Synthesis of Diamond Thin Films by Rf Plasma Assisted Chemical Vapor Deposition)

  • 이상희;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권7호
    • /
    • pp.552-556
    • /
    • 1998
  • Diamond thin films were deposited on Si substrate using $CH_4 and H_2$mixed gas by RF plasma CVD. Prior to deposition, the substrate surface was mechanically scratched with the diamond paste of $3{\mu}m$ to improve the density of nucleation sites. The microstructure of diamond films deposited with methane(0.5%~2%) at the reaction pressure ranging from 20 torr to 50torrr were studied by a scanning electron microscope. It was observed in the deposited diamond films that the nucleation density decreased and crystallinity increased with decreasing the methane concentration. However, the nucleation density and crystallinity were decreased with decreasing the process pressure.

  • PDF

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF

3극 마그네트론 스퍼트링 화학 기상 증착법에 의한 도전성 다이아몬드성 탄소 박막의 합성 (Synthesis of Conducting Diamond-Like Carbon Films by TRIODE Magnetron Sputtering-Chemical Vapor Deposition)

  • 이종률;태흥식;표재확;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.243-245
    • /
    • 1994
  • We synthesized the conducting diamond-like carbon films using plasma-enhanced chemical vapor deposition and analysized its characteristics. We obtained the metal-containing diamond-like carbon films using $CH_4$, Ar gas and aluminum target. We observed the changes of electrical conductivity, microhardness and surface morphology according to $Ar/CH_4$ ratio, substrate bias and target bias. As the target bias and $Ar/CH_4$ ratio increase and the substrate bias decreases, the electrical conductivity and surface roughness increase. The increase of hardness involves decrease of the electrical conductivity. Metal-containing amorphous hydrogenated carbon films show improved adhesion on metal substrates compared to pure diamond-like carbon films and better electrical conductivity.

  • PDF

3극 마그네트론 스팟터링 화학 기상 증착법에 의한 도전성 다이아몬드성 탄소 박막의 합성 (Synthesis of Conducting Diamond-Like Carbon Films by Triode Magnetron Sputtering-Chemical Vapor Deposition)

  • 태흥식;황기웅
    • 한국표면공학회지
    • /
    • 제29권3호
    • /
    • pp.149-156
    • /
    • 1996
  • Conducting diamond-like carbon films are synthesized using Triode Magnetron Sputtering-Plasma Enhanced Chemical Vapor Deposition(TMS-PECVD), and are examined by four point probe, microhardeness tester, and scanning electron miscroscopy(SEM). As the target bias and Ar/CH$_4$, ratio increase, the electrical resitivity and microhardness of the films are found to decrease, and also, their surface morphologies tend to be rough. While the resistivities of the films are shown to increase in proportion to the increase of the substrate bias, the microhardness of the films is shown to be maximun value(1600kg/$\textrm{mm}^2$) at a certain substrate bias(-70V). We can obtain the conducting diamond-like carbon films with the microhardness of 1600(kg/$\textrm{mm}^2$) and electrical resitivity of 16($\Omega$cm) at the process condition such as target bias -400V, substrate bias -70V, and Ar/$CH_4$ ratio 20.

  • PDF

Large-Scale Graphene Production Techniques for Practical Applications

  • Bae, Sukang;Lee, Seoung-Ki;Park, Min
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.79-85
    • /
    • 2018
  • Many studies have been conducted on large-scale graphene synthesis by chemical vapor deposition. Furthermore, numerous researchers have attempted to develop processes that can continuously fabricate uniform and high-quality graphene. To compete with other types of carbon materials (carbon black, carbon fiber, carbon nanotubes, and so on), various factors, such as price, mass manufacturing capability, and quality, are crucial. Thus, in this study, we examine various large-scale graphene production methods focusing on cost competitiveness and productivity improvements for applications in various fields.

Synthesis of Diamond-Like Carbon Films on a TiO₂ Substrate by DC-Discharge Plasma Enhanced Chemical Vapor Deposition

  • 구수진;김창민;지종기
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.813-818
    • /
    • 1995
  • A diamond-like carbon (DLC) film was produced on a TiO2 substrate using a plasma enhance chemical vapor deposition (PECVD) method. The CH4-H2 plasma was produced by applying 400 V DC. The DLC film with the best crystalline structure was obtained when the concentration of CH4 in H2 was 0.75 percent by volume and total pressure was 40 torr. The presence of the diamond structure was confirmed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy methods. It was found that the diluting gas H2 played an important role in producing a DLC film using a PECVD method.

The effect of various parameters for few-layered graphene synthesis using methane and acetylene

  • Kim, Jungrok;Seo, Jihoon;Jung, Hyun Kyung;Kim, Soo H.;Lee, Hyung Woo
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.42-46
    • /
    • 2012
  • The effect of the parameters for few-layered graphene growth by thermal CVD on nickel substrate was investigated. Graphene can be synthesized by using different strategies. Chemical vapor deposition (CVD) has known as one of the most attractive methods to produce graphene due to its good film uniformity, compatibility and large scale production. The control of parameters such as temperature, growth time and pressure in CVD process has been widely recognized as the most important process in graphene growth. Different carbon precursors, methane and acetylene, were introduced in the quartz tube with a variety of growth conditions. Raman spectroscopy was used to confirm the presence of a few- or multi-layered graphene.