• Title/Summary/Keyword: Vapor quality

Search Result 594, Processing Time 0.028 seconds

A Study on properties of Lower Electrode thin films solar cell for Mo thin film (박막태양전지 하부전극용 Mo 박막특성 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.321-322
    • /
    • 2007
  • In order to increase the cost effectiveness of solar cells, module production should be treated more comprehensively. Back contact cells offer distinct advantage in the interconnection of cells to modules. Thereby Mo thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the Mo were vapor-deposited in the named order. Among them, Mo were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC power was controlled so that the composition of Mo, while the surface temperature having an effect on the quality of the thin film was changed from R.T$[^{\circ}C]$ to $200[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Micro-structural studies were carried out by XRD (D/MAX-1200, Rigaku Co.) and SEM (JSM-5400, Jeol Co.). Electrical properties were measured by CMT-SR3000 Measurement System.

  • PDF

A Study on properties of $CuInSe_2$ thin films by substrate temperature and annealing temperature (기판온도와 열처리 온도에 따른 $CuInSe_2$ 박막의 특성분석)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.354-355
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from 100[$^{\circ}C$] to 300[$^{\circ}C$] at intervals of 50[$^{\circ}C$].

  • PDF

Thin Film Passivation of Organic Light Emitting Diodes by Catalyzer Enhanced Chemical Vapor Deposition (CECVD) (촉매반응 화학기상증착법을 이용한 유기발광소자의 박막 봉지)

  • Kim, Han-Ki;Moon, J.M.;Bae, J.H.;Jeong, S.W.;Kim, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • We report on plasma damage free chemical vapor deposition technique for the thin film passivation of organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays using catalyzer enhanced chemical vapor deposition (CECVD). Specially designed CECVD system has a ladder-shaped tungsten catalyzer and movable electrostatic chuck for low temperature deposition process. The top emitting OLED with thin film $SiN_x$ passivation layer shows electrical and optical characteristics comparable to those of the OLED with glass encapsulation. This indicates that the CECVD technique is a promising candidate to grow high-quality thin film passivation layer on OLED, OTFT, and flexible displays.

  • PDF

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

The Characterization of ZnO Hybrid Structure Grown by Metal-organic Chemical Vapor Deposition

  • Kim, A-Yeong;Jang, Sam-Seok;Lee, Do-Han;Im, So-Yeong;Byeon, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • The growth of three-dimensional ZnO hybrid structures by metal-organic chemical vapor deposition was controlled through their growth pressure. Vertically aligned ZnO nanorods were grown on c-plane sapphire substrate at $600^{\circ}C$ and 400 Torr. ZnO film was then formed in-situ on the ZnO nanorods at $600^{\circ}C$ and 10 Torr. High-resolution X-ray diffraction and transmission electron microscopy measurements showed that the ZnO film on the nanorods/sapphire grew epitaxially, and that the ZnO film/nanorods hybrid structures had well-ordered wurtzite structures. The hybrid ZnO structure was shown to be about 5 ${\mu}m$ by field-emission scanning electron microscopy. The hybrid structure showed better crystalline quality than mono-layer film on sapphire substrate. Consequently, purpose of this work is developing high quality hybrid epi-growth technology using nano structure. These structures have potential applicability as nanobuilding blocks in nanodevices.

  • PDF

Characterization of Monocrystalline $\beta-SiC$ Thin Film Grown by Chemical Vapor Deposition

  • Kim H. J.;Davis R. F.
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.287-304
    • /
    • 1986
  • High quality monocrystalline $\beta$-SiC thin films were grown via two-step process of conversion of the Si(100) surface by reaction with $C_2H_4$ and the subsequent chemical vapor deposition (CVD) at $1360^{\circ}C$ and 1 atm total pressure. Four dopants, B and Al and p-type, and N and P for n-type, were also incorporated into monocrystalline $\beta$-SiC thin films during the CVD growth process. IR and Raman spectroscopies were used to evaluate the quality of the undoped $\beta$-SiC thin films and to investigate the effects of dopants on the structure of the doped $\beta$-SiC thin films. The changes in the shape of IR and Raman spectra of the doped thin films due to dopants were observed. But the XTEM micrographs except for the B-doped and annealed films showed the same density and distribution of stacking faults and dislocations as was seen in the undoped samples, The IR and Raman spectra of the B-doped and annealed films showed the broad and weak bands and one extra peak at the 850 $cm^{-1}$ respectively. The SAD pattern and XTEM micrograph of the B-doped and annealed film provided the evidence for twinning.

  • PDF

Flow Boiling Heat Transfer Characteristics of Liquid Nitrogen in Plain and Wire Coil Inserted Tubes (평활관 및 와이어코일을 삽입한 열전달촉진관에서 액체질소의 흐름비등열전달 특성)

  • Hwang Jee-Sang;Yun Rin;Kim Yongchan;Chung Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.927-933
    • /
    • 2005
  • Boiling heat transfer characteristics of liquid nitrogen in a stainless steel plain tube and wire coil inserted tubes were investigated. The test tubes, which had an inner diameter of 10.6 m and a length of 1.65 m, were horizontally located. Five wire coils having different pitch and thickness were inserted into the plain tube. The pitches of the wire coils were 18.4, 27.6, and 36.8 m, and the thickness was 1.5, 2.0, and 2.5 mm respectively. Tests were conducted at a saturation temperature of $-191^{\circ}$, mass fluxes from 58 to 105 kg/$m^2s$, and heat fluxes from 22.5 to 32.7 kw/$m^2$. A direct heating method was used to apply heat to the test section. The boiling heat transfer coefficients of liquid nitrogen were represented as a function of vapor quality, which showed significant drop at the dryout vapor quality. The maximum heat transfer enhancement using the wire coil inserted tubes over the plain tube was $174\%$ for 'Wire 3' having a thickness of 2.5 mm and a pitch of 18.4 mm.

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

Evaporating Heat Transfer Characteristics of R-l34a in a Horizontal Smooth Channel

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.156-165
    • /
    • 2006
  • Convective boiling heat transfer coefficients were measured in a horizontal minichannel with R-l34a. The test section was made of stainless steel tube with an inner diameter of 3.0 mm and a length of 2m. It was uniformly heated by applying electric current directly to the tube. Local heat transfer coefficients were obtained for heat fluxes from 10 to $40kW/m^2$, mass fluxes from 200 to $600kgT/m^2s$, qualities up to 1.0, and the inlet saturation temperature of $10^{\circ}C$. The experimental results were mapped on Wojtan et $al.'s^(7)$ and Wang et $al.'s^(8)$ flow pattern maps. The nucleate boiling was predominant at low vapor quality whereas the convective boiling was predominant at high vapor quality. Laminar flow appeared in the flow with minichannel. The experimental results were compared with six existing two-phase heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants was developed with mean and average deviations of 10.39% and -3.66%, respectively.

Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger (Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구)

  • Kim, Sung Woo;Baek, Changhyun;Song, Kang Sub;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.