• Title/Summary/Keyword: Vapor quality

Search Result 595, Processing Time 0.042 seconds

Boiling Heat Transfer Characteristics of R-410A in $300{\mu}m$ Horizontal Smooth Microchannel ($300{\mu}m$ 수평미세관내 R-410A의 비등열전달 특성)

  • Choi, Kwang-Il;Ardiyansyah, Ardiyansyah;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.262-268
    • /
    • 2008
  • The present paper dealt with flow heat transfer characteristics of R-410A vaporization in horizontal smooth microchannel. The test sections were made of stainless steel tube with inner diameters of 300 mm and length of 300 mm. The refrigerant was supplied with mass flux range of 260-600 kg/$m^2s$ and applied under operating heat flux range of 5-20 kW/$m^2$ using a direct electric current heating method. The in let saturation temperature was set at $10^{\circ}C$ and vapor quality up to 1.0. The influences of mass flux, heat flux and inner tube diameter on local heat transfer coefficients were presented. Comparison with existing heat transfer coefficient correlations was performed. An improved heat transfer coefficient correlation for refrigerant vaporization in microchannel based on superposition model was developed with a mean deviation of 14.01%.

  • PDF

Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method

  • Park, Jong-Pil;Kim, Sin-Kyu;Park, Jae-Young;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.853-856
    • /
    • 2009
  • Highly polycrystalline copper indium diselenide (CuInSe2, CIS) thin films were deposited on glass or ITO glass substrates by two-stage metal organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cuand In/Se-containing precursors. First, pure Cu thin film was prepared on glass or ITO glass substrates by using a single-source precursor, bis(ethylbutyrylacetate)copper(II) or bis(ethylisobutyrylacetato)copper(II). Second, on the resulting Cu films, tris(N,N-ethylbutyldiselenocarbamato)indium(III) was treated to produce CuInSe2 films by MOCVD method at 400 ${^{\circ}C}$. These precursors are very stable in ambient conditions. In our process, it was quite easy to obtain high quality CIS thin films with less impurities and uniform thickness. Also, it was found that it is easy to control the stoichiometric ratio of relevant elements on demands, leading to Cu or In rich CIS thin films. These CIS films were analyzed by XRD, SEM, EDX, and Near-IR spectroscopy. The optical band gap of the stoichiometric CIS films was about 1.06 eV, which is within an optimal range for harvesting solar radiation energy.

Development of a High Flow CHF Correlation for the KMRR Fuel (KMRR 핵연료에 대한 고유량 임계열속 상관식 개발)

  • Park, Cheol;Hwang, Dae-Hyun;Yoo, Yeon-Jong;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.237-246
    • /
    • 1994
  • A high flow critical heat flux (CHF) correlation, based on the single-pin CHF experimental data for finned and unfinned heated rods, was developed for the thermal-hydraulic design and safety analysis of the Korea Multi-purpose Research Reactor (KMRR) core. The correlation consists of dimensionless parameters such as Reynolds number, thermodynamic equilibrium quality, liquid-to-vapor density ratio, and hydraulic equivalent diameter ratio. The fin effect was taken into account in the correlation by a finned-to-unfinned heated perimeter ratio. The effects of a cold wall and non-uniform axial power distribution ore discussed to verify the applicability of the single-pin based correlation to the KMRR fuel bundle. The correlation limit departure from nucleate boiling ratio (DNBR) was determined as 1.44 from the statistical analysis of the CHF data.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 및 R-410A 응축에 관한 연구)

  • Jung, Ho-Jong;Kim, Nae-Hyun;Yoon, Baek;Kim, Man-Hoi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.575-583
    • /
    • 2002
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. Two internal geometries were tested; one with a smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1~0.9), mass flux (200~600 kg/$m^2$s) and heat flux (5~15 ㎾/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number for R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the reverse is true. Possible reasoning is provided considering the physical properties of the refrigerants. For the smooth tube, a correlation of Akers et at. type predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data.

Selective Si Epitaxial Growth by Control of Hydrogen Atmosphere During Heating-up (승온중 수소 분위기 제어에 의한 선택적 Si 에피텍시 성장)

  • Son, Yong-Hun;Park, Seong-Gye;Kim, Sang-Hun;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.363-368
    • /
    • 2002
  • we proposed the use of $Si_2H_ 6/H_2$ chemistry for selective silicon epitaxy growth by low-pressure chemical vapor deposition(LPCVD) in the temperature range $600~710^{\circ}C$ under an ultraclean environment. As a result of ultraclean processing, an incubation period of Si deposition only on $SiO_2$ was found, and low temperature epitaxy selective deposition on Si was achieved without addition of HCI. Total gas flow rate and deposition pressure were 16.6sccm and 3.5mtorr, respectively. In this condition, we selectively obtained high-quality epitaxial Si layers of the 350~1050$\AA$ thickness. In older to extend the selectivity, we kept high pressure $H_2$ environment without $Si_2H_6$ gas for few minutes after first incubation period and then we conformed the existence of second incubation period.

The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties. (플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성)

  • 정성회;김광식;장건익;류호진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.

Effects of catalyst pretreatment on structural and field emissive properties of carbon nanotubes synthesized by ICP-CVD method (ICP-CVD 방법으로 합성된 탄소 나노튜브의 구조적 물성 및 전계방출 특성에 촉매의 전처리 공정이 미치는 영향)

  • Hong, Seong-Tae;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1862-1864
    • /
    • 2005
  • Carbon nanotubes [CNTs] are grown on TiN-coated Si substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Pre-treatment of Ni catalysts has been performed using an RF magnetron sputtering system. Structural properties and field-emission characteristics of the CNTs grown are analyzed in terms of the RF power applied and the treatment time used in the pre-treatment process. The characterization using various techniques, such as FE-SEM, AFM, and Raman spectroscopy, show that the physical dimension as well as the crystal quality of CNTs are changed by pre-treatment of Ni catalysts. It is also seen that Ni catalysts with proper grain size and uniform surface roughness may produce much better electron emission. The physical reason for all the measured data obtained are discussed to establish the relationship between the structural property and the electron emission characteristic of CNTs.

  • PDF

Effect of Hg-ambient annealing on Hg0.7Cd0.3Te thin films for IR detector (Hg 분위기 열처리에 따른 적외선 감지용 Hg0.7Cd0.3Te 박막의구조적 특성 변화)

  • Kim, Kwang-Chon;Lee, Cha-Hyun;Choi, Won-Chel;Kim, Hyun-Jae;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.398-402
    • /
    • 2010
  • The liquid phase epitaxy(LPE) method was widely used to growth of mercury cadmium telluride(MCT) thin films. However, this method lead to Hg-vacancies in MCT thin film, because Hg has high vapor pressure at this temperature range. This is a well known defect in HgCdTe grown by LPE method. In this study, we report the development of techniques for improving the crystalline quality and controlling the composite uniformity of HgCdTe thin films using high- pressure Hg-ambient annealing method. As a result, we achieved the improvement of the composite uniformity of HgCdTe thin films. It was observed by the high angle annular dark field scanning TEM(HAADF-STEM) analysis. Moreover, new HgTe phase and a shrinking of lattice fringe were observed.

Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates (대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발)

  • Cho, Wonki;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.